Abstract:
In some embodiments, a UE is configured to, in response to detecting an absence of received packets associated with a voice call over a first time interval of a pre-determined length, initiate transmission of a first control packet to a base station. In some embodiments, the UE is further configured, based on a response to the first control packet, not to drop the packet-switched voice call at least until expiration of a second time interval of a pre-determined length after transmission of the first control packet. In some embodiments, the absence of received packets is an absence of both voice and silence packets. In some embodiments, based on absence of a response to the first control packet, the UE is configured to drop the packet-switched call.
Abstract:
This disclosure relates to techniques for performing transmission of a message in a wireless communication system. A recommended message length may be estimated based on channel conditions. A message may be prioritized for transmission based on user input and/or the recommended message length.
Abstract:
This disclosure relates to wireless connection management for an accessory device. A companion device and the accessory device may establish a wireless link. The companion device may associate with a Wi-Fi access point. The companion device may determine whether the Wi-Fi access point supports access by the accessory device to a wide area network. The companion device may determine whether to provide association information for the Wi-Fi access point to the accessory device based at least in part on whether the Wi-Fi access point supports access by the accessory device to the wide area network. The companion device may monitor whether the Wi-Fi access point continues to support access by the accessory device to the wide area network, and may indicate to the accessory device to disassociate with the Wi-Fi access point if the Wi-Fi access point no longer supports access by the accessory device to the wide area network.
Abstract:
Some embodiments relate to a smart phone or a wearable device, such as a smart watch, and associated methods for enabling the UE device to switch from a normal mode to/from a voice-to-text mode and/or a text-to-voice mode. The transition to/from voice-to-text mode and/or text-to-voice mode may be conducted automatically or through manual selection by the user of the UE. These transitions (or the presentation of a manual selection option) may be determined based on an ambient noise measurement performed by the UE.
Abstract:
Method, device, and system being performed by a first station. The method includes receiving a first call identification of a first communication session between the first station and a second station. The method further includes receiving a request, from a third station, to allow the first communication session to be transferred from the first station to the third station. Following the receipt of the request, the method includes displaying a prompt on the first station for permission to allow the first communication session to be transferred to the third station and, when the permission is received, transmitting a response, to the third station, granting permission to transfer the first communication session from the first station to the third station. Additionally, upon the call being transferred, an advisory, such as an audio or visual message, may alert the second client station of the call transfer event.
Abstract:
Some embodiments relate to a smart phone or a wearable device, such as a smart watch, and associated methods for enabling the UE device to switch from a normal mode to/from a voice-to-text mode and/or a text-to-voice mode. The transition to/from voice-to-text mode and/or text-to-voice mode may be conducted automatically or through manual selection by the user of the UE. These transitions (or the presentation of a manual selection option) may be determined based on an ambient noise measurement performed by the UE.
Abstract:
A user equipment (UE), base station and a corresponding method for receiving historical data from a diagnostic server, receiving location data of the UE, determining a probability of a failed handover during a call based on the historical data and the location data, comparing the probability of the failed handover to a threshold value and initiating a call handover to a wireless local area network when the probability of the failed handover exceeds the threshold value. Also, a UE, base station and corresponding method for determining if one or more UEs have an active voice over WiFi call or if the UEs are registered with a Internet protocol (“IP”) multimedia subsystem (“IMS”) over WiFi and biasing a cell reselection procedure of the UE to select a cell of a packet switched network such as LTE.
Abstract:
Systems, methods and computer-readable mediums are disclosed for wirelessly tethered device tracking. In some implementations, a method comprises: determining, by a first wireless device, an estimated distance between the first wireless device and a second wireless device, the second wireless device paired with the first wireless device; selecting, by the first wireless device, a first alarm to be generated by the first wireless device based on the estimated distance; and causing, by the first wireless device, the selected first alarm to be generated on the first wireless device.