Abstract:
A user equipment (UE) has a cellular connection established by a cellular chip, the cellular connection including a secondary component carrier (SCC) of carrier aggregation (CA) in the unlicensed spectrum. The UE receives, by a WiFi chip of the UE, a message from the cellular chip indicating a first frequency band corresponding to the SCC, determines whether a hotspot service is enabled utilizing at least a portion of the first frequency band that the cellular chip has indicated corresponds to the SCC and when the hotspot service is enabled, switches, by the WiFi chip, the hotspot service from the first frequency band to a second frequency band.
Abstract:
A method is disclosed where a user equipment (“UE”) is operating in a carrier aggregation mode and connected to a first cell operating on a licensed band and a second cell operating on an unlicensed band. The method may include the UE performing a carrier sensing operation on the unlicensed band, determining, from the carrier sensing operation, a duration that the unlicensed band will be occupied, refraining from transmitting data to the second cell on the unlicensed band for the duration that the unlicensed band will be occupied and setting a transmitter in communication with the second cell to a low power mode for the duration that the unlicensed band will be occupied.
Abstract:
Described herein are systems and methods for prioritizing frequency selection of a user equipment (“UE”) having a transceiver configured to enable the UE to establish a connection with a network using at least two communication protocols. A method may comprise recording, at the UE, a camped frequency and a camped band with which the UE is communicating with the first network in the first protocol, disconnecting from the first network and connecting to the second network, and disconnecting from the second network and reconnecting to the first network, wherein the reconnecting to the first network includes determining whether one of the camped frequency or a different frequency within the camped band is available for reconnection to the first network, and reconnecting to the first network using the one of the camped frequency or the different frequency within the camped band.
Abstract:
A user equipment (UE) and corresponding methods to conserve power by the UE. The UE includes a transceiver, the transceiver configured to enable the UE to establish a connection with a Long Term Evolution (LTE) network and configured to operate using a Connected Discontinuous Reception (CDRX) functionality. The processor controls the transceiver by receiving an uplink (UL) grant at a first subframe of a frame of a cycle of the CDRX functionality, transmitting data based upon the UL grant at a predetermined second subframe, and receiving a response from the LTE network corresponding to one of an acknowledgement (ACK) and a negative ACK (NACK) at a predetermined third subframe. The processor deactivates the transmitter for a remainder of the frame based or deactivates a receiver for a remainder of the frame based upon whether the ACK is received.
Abstract:
A method for transitioning a video call is provided. The method can include a wireless communication device participating in a video call with a remote communication device via a first video call session established over a connection between the wireless communication device and a first cellular network. The video call can include a packet switched video stream carried over a first bearer and an audio stream carried over a second bearer. The method can further include the wireless communication device determining a degradation in a connection quality for the first cellular network; transitioning to a legacy cellular network having a circuit switched domain in response to the degradation in connection quality for the first cellular network; establishing a second video call session on the legacy cellular network; and using the second video call session to continue the video call on the legacy cellular network.