Abstract:
Circuits, methods, and apparatus that prevent or limit undesirable transient currents that may occur during a connector insert extraction and may damage electrical components connected to the connector receptacle.
Abstract:
High-speed connectors having a high density of contacts may be provided. One example may provide a connector having a housing with a slot forming an opening in a top side. The slot and opening may be arranged to receive a card. This connector may provide a high density of contacts by arranging the contacts in multiple rows in the slot. Various contacts may include barbs to be inserted into the housing. The barbs may be angled and may have one or more teeth to help anchor the contacts in place. A conductive or nonconductive shield or shell may be placed over the housing. When a conductive shield is used, metal pins may be inserted into the housing for mechanical stability and secured to the shield, and various contacts may have contacting portions in contact with the shield to improve signal integrity.
Abstract:
Circuits, methods, and apparatus that provide improved data encoding for data transmitted through a channel of limited bandwidth. One example can provide circuits, signaling methods, and apparatus that can encode data to more fully utilize a bandwidth of a physical channel. This encoding can help to increase a data rate through the physical channel.
Abstract:
Circuits, methods, and apparatus that provide improved data recovery for data transmitted through a channel of limited bandwidth. An example can provide circuits, methods, and apparatus that can equalize losses in a physical channel. This equalization can provide an overall channel response that is more consistent and uniform.
Abstract:
Circuits, methods, and apparatus that provide improved data recovery for data transmitted through a channel of limited bandwidth. An example can provide circuits, methods, and apparatus that can equalize losses in a physical channel. This equalization can provide an overall channel response that is more consistent and uniform.
Abstract:
Circuits, methods, and apparatus that prevent or limit undesirable transient currents that may occur during a connector insert extraction and may damage electrical components connected to the connector receptacle.
Abstract:
An electronic device including a universal serial bus type-C connector. The connector includes a first plurality of contacts and a second plurality of contacts. Each of the first plurality of contacts and each of the second plurality of contacts include a first layer formed of a first material and a second layer formed of a second material, the second layer over the first layer. The second layer is present in a first area of each of the first plurality of contacts and the second layer is absent from the first area of each of the second plurality of contacts.
Abstract:
Connector receptacle tongues having contacts arranged to disconnect from corresponding contacts in a connector insert in such a way that undesirable current pathways that damage electrical components associated with the connector receptacle are avoided. Other examples include connector receptacles having a tongue in a passage and ground spring contacts located in openings in sides of the passage, where the ground spring contacts connect to a shield of a connector insert such that these undesirable current pathways are avoided.