Fast reconfiguring environment for mobile computing devices

    公开(公告)号:US11599626B1

    公开(公告)日:2023-03-07

    申请号:US16815295

    申请日:2020-03-11

    Abstract: An example method includes receiving an indication of a selection of a first application environment that includes a first virtual environment associated with a first security domain and is configured to isolate execution of software applications within the first application environment, suspending execution of a second application environment that includes a second virtual environment associated with a second security domain different from the first security domain, initiating execution of the first application environment, identifying information associated with the first security domain and provided by the first application environment that is to be sent to an external computing device associated with the first security domain, selecting communication network(s) from one or more communication networks that are each available to the mobile computing device for data communication, encrypting, based on the first security domain and network(s), the information, and sending, to the external computing device via the network(s), the encrypted information.

    Systems and methods for data in transit encryption

    公开(公告)号:US10979402B1

    公开(公告)日:2021-04-13

    申请号:US15975580

    申请日:2018-05-09

    Abstract: Disclosed herein are embodiments of systems, methods, and products comprising a computing device, which provides Efficient Data-In-Transit Protection Techniques for Handheld Devices (EDITH) to protect data-in-transit. An end user device (EUD) may generate a multicast data packet. The EDITH module of the EUD encapsulates the data packet in a GRE packet and directs the GRE packet to a unicast destination address of an EDITH Multicast Router included in an infrastructure. The EDITH module on the EUD double compresses and double encrypts the GRE packet. The EDITH module on the infrastructure decrypts and decompresses the double compressed and double encrypted GRE packet to recreate the GRE packet. The EDITH module on the infrastructure decapsulates the GRE packet to derive the original multicast data packet, and distributes the original multicast data packet to the multiple group member based on the multicast destination address included in the original multicast data packet.

    Systems and methods for implementing multiple personas in a computing system

    公开(公告)号:US10831877B1

    公开(公告)日:2020-11-10

    申请号:US15912411

    申请日:2018-03-05

    Abstract: Disclosed herein are embodiments of systems, methods, and products comprise a computing device, which allows a device to be used in different classification levels by powering the device down and booting to a different classified level without the need to switch hard drives. The disclosed software shield and persona switcher (Shielder) module provides independent application environments (personas) for separate security domains while allowing fast transition between personas. Shielder module supports multiple security classification via a minimal system storage partitioning. Shielder module allows efficient collection and reallocation of memory and persistent storage according to need and priority. Shielder module provides secure management of communication media by directing the system communication according to the security profile of the active persona.

    Systems and methods for segmented attack prevention in internet of things (IoT) networks

    公开(公告)号:US10742674B1

    公开(公告)日:2020-08-11

    申请号:US15940853

    申请日:2018-03-29

    Abstract: Disclosed herein are embodiments of systems, methods, and products comprise a computing device, which allows in-network and network-border protection for Internet of things (IoT) devices by securely partitioning network space and defining service-based access to IoT devices. The disclosed segmented attack prevention system for IoT networks (SAPSIN) segments the IoT network into two virtual networks: a service network and a control network; and define access control rules for each virtual network. In the service network, SAPSIN utilizes a service-based approach to control device access, allowing only configured protocol, applications, network ports, or address groups to enter or exit the network. In control network, The SAPSIN provides the access control rules by defining a threshold for the number of configuration requests within a predetermined time. As a result, SAPSIN protects IoT devices against intrusion and misuse, without the need for device-specific software or device-specific security hardening.

Patent Agency Ranking