Abstract:
Methods and apparatus to configure virtual private mobile networks are disclosed. Example methods include provisioning a virtual private mobile network within a wireless network, and, after provisioning the virtual private mobile network, determining whether a first communication from a user equipment matches a security event profile. When the first communication matches the profile, the example methods include transmitting, from the wireless network via a first base transceiver station, an instruction to cause the user equipment to be communicatively coupled to the virtual private mobile network. The example methods further include instructing the user equipment to transmit a second communication through a second base transceiver station that is physically separate from the first base transceiver station and through the virtual private mobile network. In the example methods, the virtual private mobile network is isolated in a wireless spectrum from other portions of the network.
Abstract:
A cache server for providing content includes a processor configured to receive a first datagram from a client system sent to an anycast address, send a response datagram to the client system in response to the first datagram, receive a request datagram from the client system sent to the anycast address, and send a batch of content datagrams to the client system. The first datagram includes a universal resource locator corresponding to the content. The response datagram includes a content identifier for the content. The request datagram includes the content identifier, an offset, and a bandwidth indicator. The batch of content datagrams includes a portion of the content starting at the offset.
Abstract:
A content delivery system includes a cache server, a domain name server, and a redirector. The domain name server is configured to receive a request for a cache server address, and provide an IPv6 anycast address. The redirector is configured to receive a content request addressed to the IPv6 anycast address from a client system, receive load information from the cache server, and determine if the cache server is available. The redirector is further configured to forward the content request to the cache server when the cache server is available. The cache server is configured to receive the content request forwarded from the redirectors, send a response to the content request to a client system, the response including an IPv6 unicast address of the cache server as a source address, an IPv6 unicast address of the client system as a destination address, and the IPv6 anycast address as a home address, and provide the content to the requestor.
Abstract:
A cache server for providing content includes a processor configured to receive a first datagram from a client system sent to an anycast address, send a response datagram to the client system in response to the first datagram, receive a request datagram from the client system sent to the anycast address, and send a batch of content datagrams to the client system. The first datagram includes a universal resource locator corresponding to the content. The response datagram includes a content identifier for the content. The request datagram includes the content identifier, an offset, and a bandwidth indicator. The batch of content datagrams includes a portion of the content starting at the offset.
Abstract:
When traffic arrives from the network for an idle mobile device, the network executes device activation procedures to awaken the device, which can result in a significant amount of signaling to complete. Adaptive device activation mechanisms are provided that adapt to network conditions and potentially to machine-to-machine device application requests to realize scalable device activation without increasing the resources used for this purpose and without negatively impacting existing human-to-human or human-to-machine traffic.
Abstract:
A cache server for providing content includes a processor configured to receive a first datagram from a client system sent to an anycast address, send a response datagram to the client system in response to the first datagram, receive a request datagram from the client system sent to the anycast address, and send a batch of content datagrams to the client system. The first datagram includes a universal resource locator corresponding to the content. The response datagram includes a content identifier for the content. The request datagram includes the content identifier, an offset, and a bandwidth indicator. The batch of content datagrams includes a portion of the content starting at the offset.
Abstract:
Methods for obfuscating an image of a subject in a captured media are disclosed. For example, a method receives a communication from an endpoint device of a subject indicating that the image of the subject is to be obfuscated in a captured media. The communication may include a feature set associated with the subject, where the feature set contains facial features of the subject and motion information associated with the subject. The method then detects the image of the subject in the captured media. For example, the image of the subject is detected by matching the facial features of the subject to the image of the subject in the captured media and matching the motion information associated with the subject to a trajectory of the image of the subject in the captured media. The method then obfuscates the image of the subject in the captured media.
Abstract:
When traffic arrives from the network for an idle mobile device, the network executes device activation procedures to awaken the device, which can result in a significant amount of signaling to complete. Adaptive device activation mechanisms are provided that adapt to network conditions and potentially to machine-to-machine device application requests to realize scalable device activation without increasing the resources used for this purpose and without negatively impacting existing human-to-human or human-to-machine traffic.
Abstract:
A cache server for providing content includes a processor configured to receive a first datagram from a client system sent to an anycast address, send a response datagram to the client system in response to the first datagram, receive a request datagram from the client system sent to the anycast address, and send a batch of content datagrams to the client system. The first datagram includes a universal resource locator corresponding to the content. The response datagram includes a content identifier for the content. The request datagram includes the content identifier, an offset, and a bandwidth indicator. The batch of content datagrams includes a portion of the content starting at the offset.
Abstract:
A cache server for providing content includes a processor configured to receive a first datagram from a client system sent to an anycast address, send a response datagram to the client system in response to the first datagram, receive a request datagram from the client system sent to the anycast address, and send a batch of content datagrams to the client system. The first datagram includes a universal resource locator corresponding to the content. The response datagram includes a content identifier for the content. The request datagram includes the content identifier, an offset, and a bandwidth indicator. The batch of content datagrams includes a portion of the content starting at the offset.