Abstract:
A method of producing a metallic powder material comprises supplying feed materials to a melting hearth, and melting the feed materials on the melting hearth with a first heat source to provide a molten material having a desired chemical composition. At least a portion of the molten material is passed from the melting hearth either directly or indirectly to an atomizing hearth, where it is heated using a second heat source. At least a portion of the molten material from the atomizing hearth is passed in a molten state to an atomizing apparatus, which forms a droplet spray from the molten material. At least a portion of the droplet spray is solidified to provide a metallic powder material.
Abstract:
An atomizing system and method are disclosed. A system can include a tundish configured to hold a molten material and a nozzle in fluid communication with the tundish. The nozzle and/or the tundish can be comprised of a material having a composition that is substantially similar to the composition of the molten material. An internal channel can be defined in at least one of the tundish or the nozzle. Additionally, a pump can be configured to pump a molten heat transfer medium through the internal channel. A method of atomizing the molten material can include affecting heat transfer between the molten material and the tundish and/or the nozzle with a molten heat transfer medium in at least one internal channel in the tundish and/or the nozzle. The tundish and/or the nozzle can comprise a material that is substantially similar to the molten material.
Abstract:
A casting system and method. The casting system can include an energy source and a hearth, which can have a tapered cavity. The tapered cavity can have a first end portion and a second end portion, and the tapered cavity can narrow between the first and second end portions. Further, the tapered cavity can have an inlet at the first end portion that defines an inlet capacity, and one or more outlets at the second end portion that define an outlet capacity. Where the cavity has a single outlet, the outlet capacity can be less than the inlet capacity. Where the cavity has multiple outlets, the combined outlet capacity can match the inlet capacity. Further, the cross-sectional area of the tapered cavity near the inlet can be similar to the cross-sectional area of the inlet.
Abstract:
A casting system and method. The casting system can include an energy source and a hearth, which can have a tapered cavity. The tapered cavity can have a first end portion and a second end portion, and the tapered cavity can narrow between the first and second end portions. Further, the tapered cavity can have an inlet at the first end portion that defines an inlet capacity, and one or more outlets at the second end portion that define an outlet capacity. Where the cavity has a single outlet, the outlet capacity can be less than the inlet capacity. Where the cavity has multiple outlets, the combined outlet capacity can match the inlet capacity. Further, the cross-sectional area of the tapered cavity near the inlet can be similar to the cross-sectional area of the inlet.