Abstract:
A system is disclosed. The system can comprise drive circuitry included in a first component of the system, the drive circuitry configured to drive a first touch electrode on a touch sensor panel. The system can also comprise a driving line configured to couple an output of the drive circuitry to the first touch electrode. The system can also comprise a feedback line configured to couple the output of the drive circuitry to an input of the drive circuitry, wherein a first end of the feedback line is coupled to the input of the drive circuitry at the first component, and a second end of the feedback line is configured to be coupled to the output of the drive circuitry at a second component, different from the first component, of the system.
Abstract:
A touch controller. The touch controller can include first sense circuitry configured to be coupled to a first electrode on a touch sensor panel, the first sense circuitry configured to sense a first self-capacitance associated with the first electrode, and a first mutual capacitance associated with the first electrode. In some examples, the first sense circuitry can be configured to sense the first self-capacitance and the first mutual capacitance simultaneously. In some examples, the touch controller can further include a first mixer and a second mixer coupled to the first sense circuitry, the first mixer configured to demodulate a first output from the first sense circuitry to extract information about the first self-capacitance from the first output, the second mixer configured to demodulate the first output from the first sense circuitry to extract information about the first mutual capacitance from the first output.
Abstract:
A charge pump that can be configured to operate in a first mode and a second mode is disclosed. The charge pump can comprise a charging capacitor coupled to a first node and configured to transfer a first DC voltage to the first node. The charge pump can also comprise a first output node and a second output node coupled to the first node. During the first mode, the first output node can be configured to output a second DC voltage based on the first DC voltage, and the second output node can be configured to output a third DC voltage based on the first DC voltage. During the second mode, the first output node can be configured to output the second DC voltage, and the second output node can be configured to output an AC voltage, the AC voltage being offset by the third DC voltage.
Abstract:
A self-capacitance touch screen. In some examples, the touch screen comprises a plurality of display pixels, a first display pixel of the plurality of display pixels including a first touch electrode of a plurality of touch electrodes, and a gate line coupled to the first display pixel, wherein the gate line is configured such that a voltage at the gate line substantially follows a voltage at the first touch electrode. In some examples, the gate line is coupled to a resistor, the resistor being configured to decouple the gate line from ground. In some examples, the gate line is coupled to an AC voltage source.
Abstract:
A self-capacitive touch sensor panel configured to have a portion of both the touch and display functionality integrated into a common layer is provided. The touch sensor panel includes a layer with circuit elements that can switchably operate as both touch circuitry and display circuitry such that during a touch mode of the device the circuit elements operate as touch circuitry and during a display mode of the device the circuit elements operate as display circuitry. The touch mode and display mode can be time multiplexed. By integrating the touch hardware and display hardware into common layers, savings in power, weight and thickness of the device can be realized.
Abstract:
A charge pump that can be configured to operate in a first mode and a second mode is disclosed. The charge pump can comprise a charging capacitor coupled to a first node and configured to transfer a first DC voltage to the first node. The charge pump can also comprise a first output node and a second output node coupled to the first node. During the first mode, the first output node can be configured to output a second DC voltage based on the first DC voltage, and the second output node can be configured to output a third DC voltage based on the first DC voltage. During the second mode, the first output node can be configured to output the second DC voltage, and the second output node can be configured to output an AC voltage, the AC voltage being offset by the third DC voltage.
Abstract:
A sense amplifier can be designed with a series variable resistance circuit to dynamically adjust an input resistance in series with the sense amplifier for stability during the different operating modes. In some examples, a switchable resistor can be switched into the input path of the sense amplifier for stability when required by increased capacitive loading of the sense electrodes, and can be switched out of the input path of the sense amplifier when unnecessary for stability. In some examples, an adjustable resistor can be coupled to and in series with the input of the sense amplifier. The resistance of the adjustable resistor can be tuned to stabilize the sense amplifier during operating modes having increased capacitive loading from the sense electrodes and can be minimized when additional input resistance is unnecessary for stability.
Abstract:
A self-capacitance touch sensor panel including a plurality of touch electrodes and one or more sense circuits coupled to the touch electrodes. The touch sensor panel also includes at least one offset cancellation circuit coupled to at least one of the touch electrodes and configured to generate an offset cancellation signal to cancel an offset signal at the at least one touch electrode. In some examples, the offset cancellation signal can be an offset cancellation current to cancel an offset current. In some examples, the offset cancellation circuit comprises a variable resistor, and a magnitude of the offset cancellation current is based on a resistance of the variable resistor. In some examples, each touch electrode is coupled to an offset cancellation circuit. In other examples, a single offset cancellation circuit is shared by a plurality of touch electrodes.
Abstract:
Systems and processes for stimulating a touch sensor panel using orthogonal frequencies are provided. In one example process, the drive lines of the touch sensor panel can be stimulated with stimulation signals having orthogonal frequencies. The orthogonal frequencies can be separated by a frequency that is inversely proportional to an integration time of the touch sensor panel. The touch signals generated in response to the stimulation signals can be amplified, converted into digital form, demodulated using the orthogonal frequencies, and integrated over the integration time. Integrating the demodulated signals over a length of time that is inversely proportional to the frequency spacing between the orthogonal frequencies reduces or eliminates interference in the touch signals caused by the stimulation signals having different frequencies.