Abstract:
An system, apparatus and method for utilizing software and hardware portions of a neural network to fix, or hardwire, certain portions while modifying other portions. A first set of weights for layers of the first neural network are established, and selected weights are modified to generate a second set of weights, based on a second dataset. The second set of weights is then used to train a second neural network.
Abstract:
An apparatus and method are provided for processing a received input signal comprising a sequence of data blocks. Counter circuitry within the apparatus is arranged to receive a digital representation of the input signal, and for each data block generates a count value indicative of occurrences of a property of the digital representation (for example a rising edge or a falling edge) during an associated data block transmission period. Quantization circuitry then maps each count value to a soft decision value from amongst a predetermined set of soft decision values, where the number of soft decision values in the predetermined set exceeds a number of possible data values of the data block. The output circuitry then generates a digital output signal in dependence on the soft decision values. Such an apparatus has been found to provide a low power technique for a receiver, whilst still enabling the improved sensitivity benefits of using soft decisions to be achieved, and allows the apparatus to be constructed using all digital components.
Abstract:
An apparatus and method are provided for detecting a resonant frequency giving rise to an impedance peak in a power delivery network used to provide a supply voltage. The apparatus includes resonant frequency detection circuitry that comprises test frequency control circuitry and a loading circuit. The test frequency control circuitry is arranged to generate control signals to indicate a sequence of test frequencies. A loading circuit is controlled by the control signals and operates from the supply voltage. In particular, in response to each test frequency indicated by the control signals, the loading circuit draws a duty-cycled current load through the power delivery network at that test frequency. Operation of the loading circuit produces a measurable property whose value varies in dependence on the supply voltage, thus enabling the resonant frequency to be determined from a variation in the value of that measurable property.