Abstract:
The frack plug has a sealing element that reforms when set to hold differential pressure. The element is granular with adhesive to hold the granular particles together but allow the shape to reform under setting force. The adhesive can be broken down with a chemical agent or in other ways to allow the seal to reform to the sealing position at the desired depth. As a result the structural components can disintegrate and the seal assembly can fragment into small pieces that can be circulated out of the well or allowed to drop to the hole bottom. The seal can have particles of controlled electrolytic materials (CEM), natural or synthetic sand, swelling or non-swelling rubber. The assembly can contain pellets that selectively release to initiate the breakdown of the structural components of the frack plug.
Abstract:
A fully disintegrating plug has a passage therethrough and a ball seat at an upper end. The seal material that comprises plastic nuggets, sand and a grease binder is initially disposed behind a protective sleeve. A wireline setting tool creates relative movement between a plunger and a mandrel body that has a ramp surface adjacent the outlet of the protective sleeve. The sleeve outlet is closed for running in but plunger movement pushes the seal material so as to displace the closure at the sleeve outlet with the seal material that is forced up the mandrel ramp surface and against the surrounding tubular. After an object is landed on the mandrel seat and the treating is concluded, the plug components are caused to disintegrate or otherwise fail for complete removal. Multiple plugs are contemplated for fracturing or other treating applications.
Abstract:
A fully disintegrating plug has a passage therethrough and a ball seat at an upper end. The seal material that comprises plastic nuggets, sand and a grease binder is initially disposed behind a protective sleeve. A wireline setting tool creates relative movement between a plunger and a mandrel body that has a ramp surface adjacent the outlet of the protective sleeve. The sleeve outlet is closed for running in but plunger movement pushes the seal material so as to displace the closure at the sleeve outlet with the seal material that is forced up the mandrel ramp surface and against the surrounding tubular. After an object is landed on the mandrel seat and the treating is concluded, the plug components are caused to disintegrate or otherwise fail for complete removal. Multiple plugs are contemplated for fracturing or other treating applications.
Abstract:
An annularly shaped structure serves as a support and seal when pushed out on a ramp. A continuous seal in a groove is used on one or two sides to enhance sealing. A separate annular structure for sealing can be disposed adjacent to the shape having alternating longitudinal slots so that each structure is targeted to a different purpose. The structures disintegrate when made of a disintegrating material such as for example a controlled electrolytic material (CEM) so that removal of the barrier can occur after a treating operation such as fracturing where many such barriers are deployed. The slots have enlarged holes at their ends to reduce stress concentration that can lead to cracking.