Abstract:
Methods, systems, and apparatuses for performing packet loss concealment are disclosed. In response to determining that an encoded frame representing a segment of a signal is bad, an encoded parameter within the encoded frame is decoded based on bit information (such as soft bit information) associated with the encoded parameter to obtain a decoded parameter. Whether the decoded parameter violates a parameter constraint is determined. If a parameter constraint violation is detected, an estimate of the decoded parameter is generated. Either the decoded parameter or estimate of the decoded parameter is passed to a decoder for use in decoding the encoded frame.
Abstract:
A system and method for modifying the size of data packets transmitted over a packet network in a manner that avoids overloading of the network. The system and method involves monitoring one or more parameters indicative of an amount of bandwidth being utilized on the packet network, responsive to the monitoring, determining that a level of bandwidth utilization on the packet network has changed, responsive to the determination that the level of bandwidth utilization on the packet network has changed, issuing a command to change the size of packets used for carrying data from a first packet size to a second packet size.
Abstract:
A system and method is described that improves the intelligibility of a far-end telephone speech signal to a user of a telephony device in the presence of near-end background noise. As described herein, the system and method improves the intelligibility of the far-end telephone speech signal in a manner that does not require user input and that minimizes the distortion of the far-end telephone speech signal. The system is integrated with an acoustic echo canceller and shares information therewith.
Abstract:
A system that utilizes closed-form solutions to perform echo cancellation is described. The system includes a filter, filter parameter determination logic and a combiner. The filter is configured to process a far-end audio signal in accordance with one or more filter parameters to generate an estimated echo signal. The filter parameter determination logic is configured to update estimated statistics associated with the far-end audio signal and a microphone signal based on instantaneous statistics associated with the far-end audio signal and the microphone signal, and calculate the one or more filter parameters based upon the updated estimated statistics. The combiner is configured to generate an estimated near-end audio signal by subtracting the estimated echo signal from the microphone signal.
Abstract:
Methods, systems, and apparatuses are described for improved multi-microphone source tracking and noise suppression. In multi-microphone devices and systems, frequency domain acoustic echo cancellation is performed on each microphone input, and microphone levels and sensitivity are normalized. Methods, systems, and apparatuses are also described for improved acoustic scene analysis and source tracking using steered null error transforms, on-line adaptive acoustic scene modeling, and speaker-dependent information. Switched super-directive beamforming reinforces desired audio sources and closed-form blocking matrices suppress desired audio sources based on spatial information derived from microphone pairings. Underlying statistics are tracked and used to updated filters and models. Automatic detection of single-user and multi-user scenarios, and single-channel suppression using spatial information, non-spatial information, and residual echo are also described.
Abstract:
A system and method is described that improves the intelligibility of a far-end telephone speech signal to a user of a telephony device in the presence of near-end background noise. As described herein, the system and method improves the intelligibility of the far-end telephone speech signal in a manner that does not require user input and that minimizes the distortion of the far-end telephone speech signal. The system is integrated with an acoustic echo canceller and shares information therewith.
Abstract:
A system that utilizes closed-form solutions to perform echo cancellation is described. The system includes a filter, filter parameter determination logic and a combiner. The filter is configured to process a far-end audio signal in accordance with one or more filter parameters to generate an estimated echo signal. The filter parameter determination logic is configured to update estimated statistics associated with the far-end audio signal and a microphone signal based on instantaneous statistics associated with the far-end audio signal and the microphone signal, and calculate the one or more filter parameters based upon the updated estimated statistics. The combiner is configured to generate an estimated near-end audio signal by subtracting the estimated echo signal from the microphone signal.