摘要:
A method of training a classifier for computer aided detection of digitized medical image, includes providing a plurality of bags, each bag containing a plurality of feature samples of a single region-of-interest in a medical image, where each region-of-interest has been labeled as either malignant or healthy. The training uses candidates that are spatially adjacent to each other, modeled by a “bag”, rather than each candidate by itself. A classifier is trained on the plurality of bags of feature samples, subject to the constraint that at least one point in a convex hull of each bag, corresponding to a feature sample, is correctly classified according to the label of the associated region-of-interest, rather than a large set of discrete constraints where at least one instance in each bag has to be correctly classified.
摘要:
A method and system correlate candidate information and provide batch classification of a number of related candidates. The batch of candidates may be identified from a single data set. There may be internal correlations and/or differences among the candidates. The candidates may be classified taking into consideration the internal correlations and/or differences. The locations and descriptive features of a batch of candidates may be determined. In turn, the locations and/or descriptive features determined may used to enhance the accuracy of the classification of some or all of the candidates within the batch. In one embodiment, the single data set analyzed is associated with an internal image of patient and the distance between candidates is accounted for. Two different algorithms may each simultaneously classify all of the samples within a batch, one being based upon probabilistic analysis and the other upon a mathematical programming approach. Alternate algorithms may be used.
摘要:
The present invention provides methods and compositions for predicting patient responses to cancer treatment using hypoxia gene signatures. These methods can comprise measuring in a biological sample from a patient the levels of gene expression of a group of the genes designated herein. The present invention also provides for microarrays that can detect expression from a group of genes.
摘要:
A method for finding a ranking function ƒ that classifies feature points in an n-dimensional space includes providing a plurality of feature points xk derived from tissue sample regions in a digital medical image, providing training data A comprising training samples Aj where A = ⋃ j = 1 S ( A j = { x i j } i = 1 m j ) , providing an ordering E={(P,Q)|APAQ} of at least some training data sets where all training samples xiεAP are ranked higher than any sample xjεAQ, solving a mathematical optimization program to determine the ranking function ƒ that classifies said feature points x into sets A. For any two sets Ai, Aj, AiAj, and the ranking function ƒ satisfies inequality constraints ƒ(xi)≦ƒ(xj) for all xiεconv(Ai) and xjεconv(Aj), where conv(A) represents the convex hull of the elements of set A.
摘要:
The present invention provides methods and compositions for predicting patient responses to cancer treatment using hypoxia gene signatures. These methods can comprise measuring in a biological sample from a patient the levels of gene expression of a group of the genes designated herein. The present invention also provides for microarrays that can detect expression from a group of genes.
摘要:
A method of training a classifier for computer aided detection of digitized medical images, includes providing a plurality of bags, each bag containing a plurality of feature samples of a single region-of-interest in a medical image, wherein said features include texture, shape, intensity, and contrast of said region-of-interest, wherein each region-of-interest has been labeled as either malignant or healthy, and training a classifier on said plurality of bags of feature samples, subject to the constraint that at least one point in a convex hull of each bag, corresponding to a feature sample, is correctly classified according to the labeled of the associated region-of-interest.
摘要:
Functional imaging information is used to determine a probability of residual disease given a treatment. The functional imaging information shows different characteristic levels for different regions of the tumor. The probability is output for planning use and/or used to automatically determine dose by region. Using the probability, the dose may be distributed by region so that some regions receive a greater dose than other regions. This distribution by region of dose more likely treats the tumor with a same dose, allows a lesser dose to sufficient treat the tumor, and/or allows a greater dose with a lesser or no increase in risk to normal tissue. The dose plan may account for personalized tumors as each patient may have distinct tumors. Probability of dose application accuracy may also be used, so that a combined treatment probability allows efficient dose planning.
摘要:
Functional imaging information is used to determine a probability of residual disease given a treatment. The functional imaging information shows different characteristic levels for different regions of the tumor. The probability is output for planning use and/or used to automatically determine dose by region. Using the probability, the dose may be distributed by region so that some regions receive a greater dose than other regions. This distribution by region of dose more likely treats the tumor with a same dose, allows a lesser dose to sufficient treat the tumor, and/or allows a greater dose with a lesser or no increase in risk to normal tissue. The dose plan may account for personalized tumors as each patient may have distinct tumors. Probability of dose application accuracy may also be used, so that a combined treatment probability allows efficient dose planning.
摘要:
Modeling of prognosis of survivability, side-effect, or both is provided. For example, RILI is predicted using bullae information. The amount, volume or ratio of Bullae, even alone, may indicate the likelihood of complication, such as the likelihood of significant (e.g., stage 3) pneumonitis. As another example, RILI is predicted using uptake values of an imaging agent. Standardized uptake from a functional image (e.g., FDG uptake from a positron emission image), alone or in combination with other features, may indicate the likelihood of side-effect. In another example, survivability, such as two-year survivability, is predicted using blood biomarkers. The characteristics of a patient's blood may be measured and, alone or in combination with other features, may indicate the likelihood of survival. The modeling may be for survivability, side-effect, or both and may use one or more of the blood biomarker, uptake value, and bullae features.
摘要:
Knowledge-based interpretable predictive modeling is provided. Expert knowledge is used to seed training of a model by a machine. The expert knowledge may be incorporated as diagram information, which relates known causal relationships between predictive variables. A predictive model is trained. In one embodiment, the model operates even with a missing value for one or more variables by using the relationship between variables. For application, the model outputs a prediction, such as the likelihood of survival for two years of a lung cancer patient. A graphical representation of the model is also output. The graphical representation shows the variables and relationships between variables used to determine the prediction. The graphical representation is interpretable by a physician or other to assist in understanding.