Abstract:
A gain control process (1102) executed at a transmitter (500) generates (1314) a gain ramp signal (1206) having a delay component (1224) and a gain component (1226). The process (1102) further generates (1304) and incorporates (1306) a gain arc (1202) into a digital signal to form a digital gain signal (1204) having a digital gain change (1218). A combiner (502) combines a digital input signal (512) with the digital gain signal (1204) to generate a pre-compensated digital signal (516). A variable gain amplifier (508) applies a sequence of gains (1234,1236,1238,1240,1242) in the gain component (1126) of the gain ramp signal (1206) to a pre-adjusted analog signal (520) in order to generate a gain-adjusted analog signal (524). Application of the gain component (1126) and the digital gain change (1218) occurs when a portion (1212) of the gain arc (1202) indicates a low instantaneous signal power at an antenna (106) in order to reduce ACLR degradation.
Abstract:
In accordance with some embodiments of the present disclosure, a method for estimating and correcting phase shift in a wireless communication device, may include converting a digital signal output by digital circuitry of the wireless communication device into a compensated digital signal based on a calculated phase error. The method may also include converting the compensated digital signal into a wireless communication signal. The method may additionally include calculating an estimated instantaneous reference phase of the digital signal output by the digital circuitry. The method may further include calculating an estimated transmit phase of the wireless communication signal. Moreover, the method may include calculating a phase error based on a difference between the estimated instantaneous reference phase and the estimated transmit phase of the wireless communication signal.
Abstract:
In accordance with the present disclosure, method may include receiving one or more environment parameter signals indicative of an environment of a wireless communication element. The method may also include communicating one or more control signals to an antenna tuner of the wireless communication element for controlling an impedance of the antenna tuner based on the one or more environment parameter signals.
Abstract:
In accordance with the present disclosure, method may include receiving one or more environment parameter signals indicative of an environment of a wireless communication element. The method may also include communicating one or more control signals to an antenna tuner of the wireless communication element for controlling an impedance of the antenna tuner based on the one or more environment parameter signals.
Abstract:
In accordance with some embodiments of the present disclosure, a method for estimating and correcting phase shift in a wireless communication device, may include converting a digital signal output by digital circuitry of the wireless communication device into a compensated digital signal based on a calculated phase error. The method may also include converting the compensated digital signal into a wireless communication signal. The method may additionally include calculating an estimated instantaneous reference phase of the digital signal output by the digital circuitry. The method may further include calculating an estimated transmit phase of the wireless communication signal. Moreover, the method may include calculating a phase error based on a difference between the estimated instantaneous reference phase and the estimated transmit phase of the wireless communication signal.
Abstract:
According to the present disclosure, a method for tracking power levels of a wireless communications signal comprises receiving a feedback signal indicative of a power level of a wireless communication signal associated transmitted from a transmit path to an antenna of a wireless communication element. The method further comprises receiving a reference signal associated with a digital signal converted into the wireless communication signal. Additionally, the method comprises determining a gain of the feedback signal with respect to the reference signal and determining a gain error based on the determined gain and an expected gain.
Abstract:
According to the present disclosure, a method for tracking power levels of a wireless communications signal comprises receiving a feedback signal indicative of a power level of a wireless communication signal associated transmitted from a transmit path to an antenna of a wireless communication element. The method further comprises receiving a reference signal associated with a digital signal converted into the wireless communication signal. Additionally, the method comprises determining a gain of the feedback signal with respect to the reference signal and determining a gain error based on the determined gain and an expected gain.
Abstract:
A gain control process (1102) executed at a transmitter (500) generates (1314) a gain ramp signal (1206) having a delay component (1224) and a gain component (1226). The process (1102) further generates (1304) and incorporates (1306) a gain arc (1202) into a digital signal to form a digital gain signal (1204) having a digital gain change (1218). A combiner (502) combines a digital input signal (512) with the digital gain signal (1204) to generate a pre-compensated digital signal (516). A variable gain amplifier (508) applies a sequence of gains (1234,1236,1238,1240,1242) in the gain component (1126) of the gain ramp signal (1206) to a pre-adjusted analog signal (520) in order to generate a gain-adjusted analog signal (524). Application of the gain component (1126) and the digital gain change (1218) occurs when a portion (1212) of the gain arc (1202) indicates a low instantaneous signal power at an antenna (106) in order to reduce ACLR degradation.