Splitter module and enclosure for use therein

    公开(公告)号:US11774696B2

    公开(公告)日:2023-10-03

    申请号:US17709728

    申请日:2022-03-31

    Abstract: An enclosure (10) includes a base (38) defining a splice region (148) and a cover (40) coupled to the base (38) to move between a closed position and an open position. A plurality of ruggedized adapters (26) are on the cover (40), each adapter having an inner port (64) and an outer port (66). A removable module (32) is disposed on the cover (40), at least one input fiber (12) being routed from the splice region (148) of the base (38) to the removable module (32), wherein the at least one input fiber (12) is output from the module as a pigtail (28) having a connectorized end that is connected to an inner port (64) of a ruggedized adapter (26). A cable input location (16) receives an input cable (14/20) including at least one tube (138) surrounding at least one fiber (12) that carries the same signal as the at least one input fiber (12) being routed from the splice region (148) to the removable module (32). The input cable (14/20) is anchored to the base (38) at the cable input location (16). A tube holder (150) is slidably mounted to the base (38) past the cable input location (16), wherein the tube holder (150) keeps separate an unused fiber-carrying tube (138) that is stored within the base (38) in a loop (122) from a fiber-carrying tube (138) whose fiber (12) leads toward the splice region (148) of the base (38) for further routing toward the removable module (32).

    Splitter module and enclosure for use therein

    公开(公告)号:US10371913B2

    公开(公告)日:2019-08-06

    申请号:US15760860

    申请日:2016-09-16

    Abstract: An enclosure (10) includes a base (38) defining a splice region (148) and a cover (40) coupled to the base (38) to move between a closed position and an open position. A plurality of ruggedized adapters (26) are on the cover (40), each adapter having an inner port (64) and an outer port (66). A removable module (32) is disposed on the cover (40), at least one input fiber (12) being routed from the splice region (148) of the base (38) to the removable module (32), wherein the at least one input fiber (12) is output from the module as a pigtail (28) having a connectorized end that is connected to an inner port (64) of a ruggedized adapter (26). A cable input location (16) receives an input cable (14/20) including at least one tube (138) surrounding at least one fiber (12) that carries the same signal as the at least one input fiber (12) being routed from the splice region (148) to the removable module (32). The input cable (14/20) is anchored to the base (38) at the cable input location (16). A tube holder (150) is slidably mounted to the base (38) past the cable input location (16), wherein the tube holder (150) keeps separate an unused fiber-carrying tube (138) that is stored within the base (38) in a loop (122) from a fiber-carrying tube (138) whose fiber (12) leads toward the splice region (148) of the base (38) for further routing toward the removable module (32).

    Cam lever actuated cable sealing device

    公开(公告)号:US10208859B2

    公开(公告)日:2019-02-19

    申请号:US15369399

    申请日:2016-12-05

    Abstract: The present disclosure relates to a cable sealing device (30) for providing a seal around a communications cable (88, 90). The cable sealing device (30) includes a cable seal arrangement (38) positioned between first and second compression plates (92F, 92R). The cable sealing device (30) also includes an actuator (36) for compressing the first and second compression plates (92F, 92R) together to deform the cable sealing arrangement (38) such that the cable sealing arrangement (38) is adapted to form a seal about a cable (88, 90) routed through the cable sealing device (30). The actuator includes a cam lever (94) pivotally movable between an actuated position (P2) and a non-actuated position (P1). The actuator also includes a spring (98) for transferring load between the cam lever (94) and the first and second compression plates (92F, 92R). The spring (98) is pre-loaded when the cam lever (94) is in the non-actuated position (P1) (FIG. 13) with a pre-load equal to at least 50 percent of a total load applied through the spring (98) when the cam lever 94) is in the actuated position (P2).

Patent Agency Ranking