Abstract:
The invention relates to a thin metal sheet which is made of an alloy based on substantially recrystallized aluminum and which has a thickness of 0.25 to 12 mm, the alloy comprising, in percent by weight, Cu 3.4-4.0; Mg 0.5-0.8; Mn 0.1-0.7; Fe #0.15; Si #0.15; Zr #0.04; Ag #0.65; Zn #0.5; inevitable impurities #0.05 each and #0.15 in total, the remainder consisting of aluminum. The invention also relates to a process for manufacturing such a metal sheet and to the use thereof as a fuselage panel or sheet metal for the production of composite products such as fiber metal laminates (FML) for wing or fuselage applications in the aeronautical industry.
Abstract:
The invention relates to a rolled product having a thickness of at least 50 mm made of aluminium alloy comprising, in % by weight, 2.2% to 3.9% of Cu, 0.7% to 1.8% of Li, 0.1% to 0.8% of Mg, 0.1% to 0.6% of Mn; 0.01% to 0.15% of Ti, at least one element chosen from Zn and Ag, the amount of said element, if it is chosen, being 0.2% to 0.8% for Zn and 0.1% to 0.5% for Ag, optionally at least one element chosen from Zr, Cr, Sc, Hf, and V, the amount of said element, if it is chosen, being 0.04% to 0.18% for Zr, 0.05% to 0.3% for Cr and for Sc, 0.05% to 0.5% for Hf and for V, less than 0.1% of Fe, less than 0.1% of Si, the remainder being aluminium and inevitable impurities, having a content of less than 0.05% each and 0.15% in total; characterized in that its granular structure is predominantly recrystallised between ¼ and ½ thickness. The invention also relates to the process for manufacturing such a product. The products according to the invention are advantageously used in aircraft construction, in particular for the production of an aircraft wing spar or rib.
Abstract:
The invention concerns a sheet 0.5 to 8 mm thick made from aluminium alloy. The sheet can be obtained by a method comprising casting, homogenising, hot rolling and optionally cold rolling, solution heat treatment, quenching and tempering, the composition and the tempering being combined in such a way that the elasticity limit in the longitudinal direction Rp0.2(L) is between 395 and 435 MPa. A sheet according to the invention is particularly advantageous for producing aircraft fuselage panels.