Abstract:
The present invention relates to extruded, rolled and/or forged products. Also provided are methods of making such products based on aluminum alloy wherein a liquid metal bath is prepared comprising 2.0 to 3.5% by weight of Cu, 1.4 to 1.8% by weight of Li, 0.1 to 0.5% by weight of Ag, 0.1 to 1.0% by weight of Mg, 0.05 to 0.18% by weight of Zr, 0.2 to 0.6% by weight of Mn and at least one element selected from Cr, Sc, Hf and Ti, the quantity of said element selected, being 0.05 to 0.3% by weight for Cr and for Sc, 0.05 to 0.5% by weight for Hf and 0.01 to 0.15% by weight for Ti, the remainder being aluminum and inevitable impurities. The products and methods of the present invention offer an advantageous compromise between static mechanical strength and damage tolerance and are useful in aeronautical design.
Abstract:
The invention concerns a process to manufacture a flat-rolled product, notably for the aeronautic industry containing aluminum alloy comprising 2.1% to 3.9% Cu by weight, 0.7% to 2.0% Li by weight, 0.1% to 1,0% Mg by weight, 0% to 0.6% Ag by weight, 0% to 1% Zn by weight, at least 0.20% Fe +Si by weight, at least one element chosen from Zr, Mn, Cr, Sc, Hf and Ti, the quantity of said element, if chosen, being 0.05% to 0.18% by weight for Zn, 0.1% to 0.6% by weight for Mn, 0.05% to 0.3% by weight for Cr, 0.02% to 0.2% by weight for Sc, 0.05% to 0.5% by weight for Hf and 0.01% to 0.15% by weight for Ti, the other elements at most 0.05% by weight each and 0.15% by weight in total, the rest being aluminum, in which, notably a flattening and/or stretching is performed with a cumulated deformation of at least 0.5% and less than 3%, and a short heat-treatment is performed in which the sheet reaches a temperature between 130° C. and 170° C. for a period of 0.1 to 13 hours. The invention notably makes it possible to simplify the forming process of fuselage skins and to improve the balance between static mechanical strength properties and damage tolerance properties.
Abstract:
The invention concerns a sheet 0.5 to 8 mm thick made from aluminium alloy. The sheet can be obtained by a method comprising casting, homogenising, hot rolling and optionally cold rolling, solution heat treatment, quenching and tempering, the composition and the tempering being combined in such a way that the elasticity limit in the longitudinal direction Rp0.2(L) is between 395 and 435 MPa. A sheet according to the invention is particularly advantageous for producing aircraft fuselage panels.