Abstract:
Diagnostic systems including a pressure sensor, a determiner in communication with the pressure sensor, wherein the determiner is structured to estimate a sonic speed of a fuel based on identification of a fundamental oscillation frequency are disclosed. Also disclosed are diagnostic methods comprising receiving, by a pressure interpreter, a pressure signal, determining, by a determiner in communication with the pressure interpreter, a fundamental frequency of oscillation of the pressure signal, and determining, by the determiner, a sonic speed of a fuel based on the fundamental frequency of oscillation.
Abstract:
A system and method for measuring fuel pressure decreases in a fuel accumulator caused by a fuel injector of an internal combustion engine is provided. The system includes the ability to stop a fuel flow to a fuel accumulator of the engine. Pressure signals are transmitted to a control system of the engine until the fuel pressure in the fuel accumulator drops by a predetermined amount, at which time fuel flow is re-enabled. The pressure signals are then analyzed to determine the amount or quantity of fuel delivered by each fuel injector. The system and method maintain engine and emissions performance by limiting the amount of fuel pressure decrease in the fuel accumulator.
Abstract:
A system and method for measuring fuel pressure decreases in a fuel accumulator of an internal combustion engine is provided. The system includes the ability to stop a fuel flow to a fuel accumulator of the engine. Pressure signals are transmitted to a control system of the engine until the fuel pressure in the fuel accumulator drops by a predetermined amount, at which time fuel flow is re-enabled. The pressure signals are then analyzed to determine the amount or quantity of fuel delivered by each fuel injector. The system and method maintain engine and emissions performance by limiting the amount of fuel pressure decrease in the fuel accumulator.
Abstract:
A system and method for measuring fuel pressure decreases in a fuel accumulator of an internal combustion engine is provided. The system includes the ability to stop a fuel flow to a fuel accumulator of the engine. Pressure signals are transmitted to a control system of the engine until the fuel pressure in the fuel accumulator drops by a predetermined amount, at which time fuel flow is re-enabled. The pressure signals are then analyzed to determine the amount or quantity of fuel delivered by each fuel injector. The system and method maintain engine and emissions performance by limiting the amount of fuel pressure decrease in the fuel accumulator.