Abstract:
A system for determining the orientation of an implement relative to a frame of a machine is provided. The implement is attached to and moveable relative to the machine. A fiber optic shape sensing system is associated with the implement. The fiber optic shape sensing system provides the position and orientation of the implement relative to a reference frame that is fixed to the machine frame.
Abstract:
A system for monitoring a position of an implement of a motor grader relative to a frame thereof is provided. The motor grader includes an actuation system to selectively move the implement relative to the frame. The system includes a fiber optic cable extending along at least a portion of the frame, a portion of the actuation system and a portion of the implement. The fiber optic cable is configured to move with the portion of the actuation system and the portion of the implement, and selectively generate signals indicative of a shape thereof. The system further includes a controller in communication with the fiber optic cable. The controller is configured to determine the shape of the fiber optic cable based on the signals received therefrom, and further determine a position of the implement relative to the frame based on the shape of the fiber optic cable.
Abstract:
A system is provided. The system includes a perception sensor, a first inertial measurement unit and a first localization module. The first localization module is configured to generate a first position estimate signal indicative of an estimated position of the machine. The system includes a second inertial measurement unit and a second localization module. The second localization module is configured to generate a second position estimate signal indicative of the estimated position of the machine. A position determination module is communicably coupled to the first and second localization modules. The position determination module is configured to determine a health of the first and second localization modules based on one or more parameters indicative of errors associated with the first and second inertial measurement units respectively; and determine an estimated position of the machine based on the determined health of the first and second localization modules.
Abstract:
A system and method of controlling an earth moving implement of a machine is disclosed. The method may include receiving a pitch rate of the machine in a body reference frame and determining a roll of the machine. The method may further include determining a turning rate of the machine and calculating a pitch rate of the machine in a gravity reference frame based on the pitch rate of the machine in the body reference frame, the roll of the machine, and the turning rate of the machine. The method may further include controlling the earth moving implement based on the pitch rate of the machine in the gravity reference frame.
Abstract:
A positioning system for a machine is disclosed. The positioning system includes a satellite positioning unit to generate signals indicative of a location of the machine in a worksite and an inertial measurement unit (IMU) to generate signals indicative of a position of the machine. A controller is communicated with the satellite positioning unit and the IMU. The controller determines a first error value associated with a location of the machine based on signals received from the satellite positioning unit. The controller further determines a second error value associated with a location and a position of the machine based on signals received from the satellite positioning unit and signals received from the IMU, respectively. Further, a location of the machine is determined based on signals received from the satellite positioning unit and the IMU if the first error value is less than the second error value.
Abstract:
A system for tracking a position of a cable attached between a power source and a machine in a worksite is disclosed. The cable is further coupled to a guiding device located in the worksite between the power source and the machine. The system includes a perception module disposed on the machine to detect a location of the guiding device. The system further includes a controller disposed to be in communication with the perception module. The controller determines the location of the guiding device with respect to a location of the machine and determines a distance between the guiding device and the machine. The controller further compares the distance with a first threshold distance and a second threshold distance and generates a warning if the distance is greater than the first threshold distance or smaller than the second threshold distance.
Abstract:
A system for determining the position and orientation of a cutter module relative to a frame of a highwall miner is provided. The cutter module is attached to the highwall miner by a string of push beams and moveable relative to the highwall miner. A reel is rotatably mounted to the highwall miner frame and configured to feed out a hose chain that supplies fluid to the cutter module. A fiber optic shape sensing system is associated with the cutter module is configured to receive strain information from the fiber bundle and compute the location of at least one position of the fiber bundle that is associated with the cutter module relative to the reference frame.
Abstract:
A method of determining a heading of a machine having an implement is provided. The method includes determining a first heading data of the machine using an inertial sensor. The method includes determining a second heading data of the machine using a magnetometer. The method includes determining a position of the implement in a stationary state. The method also includes calculating a corrected second heading data based on a predefined relation between the position of the implement in the stationary state and the second heading data. The method further includes determining the heading of the machine based on the first heading data and the corrected second heading data.
Abstract:
A cascaded coupled positioning system is provided for acquiring a position of a vehicle. In the current disclosure, a global navigation satellite system is coupled with a first inertial measurement unit. The global navigation satellite system is coupled with the first inertial measurement unit by using a first signal processing unit configured to provide a tightly coupled positioning solution. The tightly coupled positioning solution of the first signal processing unit is integrated with a second inertial measurement unit. The integration is performed using a second signal processing unit configured to provide a loosely coupled positioning solution.
Abstract:
A blade control system for a track-type machine is disclosed. The blade control system has a blade, an input device configured to control movement of the blade, an actuator in connection with the blade, a first sensor configured to determine a track-speed of the machine, and a control module in communication with the input device, the actuator, and the first sensor. The control module is configured to receive a blade positioning signal from the input device, remove a component of the blade positioning signal based on a the track-speed of the machine, and transmit a modified blade positioning signal to the actuator.