Abstract:
Organic light emitting diode (OLED) devices with heat dissipation elements for electronic devices. The OLED devices comprise an OLED module and a frame enclosing the OLED module, wherein the frame comprises an exposing portion to outside the electronic device.
Abstract:
Modules for fixing flexible printed circuit boards. A module comprises a casing and a flexible printed circuit board. The casing has a recess on a lateral side. The flexible printed circuit board has a flexible portion disposed in the recess, wherein the thickness of the flexible portion is substantially equal to the thickness of the recess.
Abstract:
A circuit board module and a forming method thereof are provided. The circuit board module includes a first circuit board, a second circuit board and a conductive structure. The first circuit board has a first surface, a second surface and an opening. The opening passes through the first surface and the second surface. The first surface has a first solder pad. The second circuit board has a second solder pad. Part of the second circuit board passes through the opening from the first surface to the second surface, so that part of the second solder pad is exposed on the first surface. The conductive structure is electrically connected to the first solder pad and the second solder pad, so that the first circuit board is electrically connected to the second circuit board.
Abstract:
A backlight assembly includes a frame, a light source, and at least one optical film. The light source is disposed on the frame. The optical film has at least one positioning flange. The positioning flange includes at least two contact edges configured to abut against at least one edge of the frame in at least two directions to hold the optical film in place relative to the frame.
Abstract:
A backlight module comprises an assembly of a rear substrate and a front substrate. A hermetic discharge gap is formed there between and mounted with power electrodes. The backlight module further comprises a discharge gas filled in the discharge gap and a plurality of fluorescent layers of different color emissions disposed on a surface of the assembly of the rear substrate and front substrate. The discharge gas is discharged by the power electrodes.
Abstract:
A flat panel display with supporting structure. The flat panel display includes a frame, a light guide plate, and a first protrusion. The frame has a first edge. The light guide plate is disposed on the frame, comprising a second edge, corresponding to the first edge with a gap therebetween. The first protrusion is sandwiched between the first and second edges.
Abstract:
A backlight module is provided. The backlight module includes a frame, a light source and at least an optical film. The optical film has a first side with a first positioning flange and a second positioning flange, a second side with a third positioning flange and a third side with a fourth positioning flange. The edges of the first positioning flange, the second positioning flange, the third positioning flange and the fourth positioning flange abut the edges of the frame to hold the optical film in the frame.
Abstract:
A display module includes components of a display panel having an outward first FPC for connecting to a system, wherein the first FPC has a foldable part on which a welding area is defined, and a backlight unit opposite to the display panel for providing illumination for the display panel. The backlight unit has an outward second FPC which is welded with the welding area of the foldable part. Both the foldable part and second FPC are folded and turned around to keep the welding area attach to the backside of the backlight unit.
Abstract:
Modules for fixing flexible printed circuit boards. A module comprises a casing and a flexible printed circuit board. The casing has a recess on a lateral side. The flexible printed circuit board has a flexible portion disposed in the recess, wherein the thickness of the flexible portion is substantially equal to the thickness of the recess.
Abstract:
An electronic device with flexible printed circuit board structure. The electronic device includes a first flexible printed circuit board and a second flexible printed circuit board. The first flexible printed circuit board has a first bent portion. The second flexible printed circuit board has a second bent portion penetrating the first bent portion as the first and the second flexible printed circuit boards are bent simultaneously.