Abstract:
A method for forming a semiconductor structure includes following steps. A substrate structure is provided. The substrate structure includes a semiconductor substrate, a first oxide-nitride-oxide (ONO) layer, and a second ONO layer. The semiconductor substrate has first and second surfaces opposite to each other. The first ONO layer includes a first oxide layer, a first nitride layer and a second oxide layer formed on the first surface in sequence. The second ONO layer includes a third oxide layer, a second nitride layer and a fourth oxide layer formed on the second surface in sequence. A nitride mask layer is formed on the first ONO layer. The fourth oxide layer is removed. The second nitride layer and the nitride mask layer are removed. The second oxide layer and the third oxide layer are removed. A fifth oxide layer is formed on the first nitride layer.
Abstract:
A method for fabricating a silicon-oxide-nitride-oxide-silicon (SONOS) non-volatile memory cell, wherein the method comprises steps as following: a pad oxide layer and a first hard mask layer are sequentially formed on a substrate. The pad oxide layer and the first hard mask layer are then etched through to form an opening exposing a portion of the substrate. Subsequently, an oxide-nitride-oxide (ONO) structure with a size substantially less than or equal to the opening is formed to coincide with the portion of the substrate exposed from the opening.
Abstract:
A method for manufacturing NAND memory cells includes providing a substrate having a first doped region formed therein; forming a first dielectric layer, a storage layer and a patterned hard mask on the substrate; forming a STI in the substrate through the patterned hard mask and removing the patterned hard mask to define a plurality of recesses; forming a second dielectric layer and a first conductive layer filling the recesses on the substrate; and performing a planarization process to remove a portion of the first conductive layer and the second dielectric layer to form a plurality of self-aligned islanding gate structures.
Abstract:
A method for manufacturing NAND memory cells includes providing a substrate having a first doped region formed therein; forming a first dielectric layer, a storage layer and a patterned hard mask on the substrate; forming a STI in the substrate through the patterned hard mask and removing the patterned hard mask to define a plurality of recesses; forming a second dielectric layer and a first conductive layer filling the recesses on the substrate; and performing a planarization process to remove a portion of the first conductive layer and the second dielectric layer to form a plurality of self-aligned islanding gate structures.
Abstract:
An antenna and an antenna set are provided. The antenna is composed of a horseshoe sheet member and two rectangular sheet members. The horseshoe sheet member and the two rectangular sheet members are all made of a metal material. The antenna is made of a metal material, such as tinplate, and the antenna is adapted for receiving or emitting wireless signals of vertical polarization and horizontal polarization. The antenna set includes three antennae as above disposed on a substrate. The antenna set is adapted for polarization diversity, pattern diversity, and space diversity. Comparing with the conventional antenna and antenna set, the antenna and the antenna set according to the present invention have lower costs and lower heights, and can be designed as embedded antennae or hidden antennae.