摘要:
A method and apparatus for providing welding type power is disclosed. The power source is capable of receiving any input voltage over a wide range of input voltages and includes an input rectifier that rectifies the ac input into a dc signal. A dc voltage stage converts the dc signal to a desired dc voltage and an inverter inverts the dc signal into a second ac signal. An output transformer receives the second ac signal and provides a third ac signal that has a current magnitude suitable for welding, cutting or induction heating. The welding type current may be rectified and smoothed by an output inductor and an output rectifier. A controller provides control signals to the inverter and a controller power supply can also receive a range of input voltages and provide a control power signal to the controller, and a voltage independent of the input voltage.
摘要:
A method and apparatus for providing welding type power is disclosed. The power source is capable of receiving any input voltage over a wide range of input voltages and includes an input rectifier that rectifies the ac input into a dc signal. A dc voltage stage converts the dc signal to a desired dc voltage and an inverter inverts the dc signal into a second ac signal. An output transformer receives the second ac signal and provides a third ac signal that has a current magnitude suitable for welding, cutting or induction heating. The welding type current may be rectified and smoothed by an output inductor and an output rectifier. A controller provides control signals to the inverter and a controller power supply can also receive a range of input voltages and provide a control power signal to the controller, and a voltage independent of the input voltage.
摘要:
A welding power supply includes an input rectifier that receives sinusoidal or alternating line voltage and provides a rectified voltage. A pre-regulator provides a dc bus and a convertor, such as a boost convertor, provides a welding output. The pre-regulator is an SVT (slow voltage transition) and an SCT (slow current transition) switched convertor. It may include a snubber circuit having a diode that is SVT switched. Also, the boost convertor may be SVT and SCT switched. The pre-regulator preferably includes a power factor correction circuit. The power source includes, in one embodiment, an inverter having a snubber circuit having a first switch in anti-parallel with a first diode, and a second switch in anti-parallel with a second diode. The first switch and first diode are connected in series with the second switch and the second diode, and the first and second switches are connected in opposing directions, to form a switched snubber.
摘要:
A welding power supply includes an input rectifier that receives sinusoidal or alternating line voltage and provides a rectified voltage. A pre-regulator provides a dc bus and a convertor, such as a boost convertor, provides a welding output. The pre-regulator is an SVT (slow voltage transition) and an SCT (slow current transition) switched convertor. It may include a snubber circuit having a diode that is SVT switched. Also, the boost convertor may be SVT and SCT switched. The pre-regulator preferably includes a power factor correction circuit. The power source includes, in one embodiment, an inverter having a snubber circuit having a first switch in anti-parallel with a first diode, and a second switch in anti-parallel with a second diode. The first switch and first diode are connected in series with the second switch and the second diode, and the first and second switches are connected in opposing directions, to form a switched snubber.
摘要:
A welding power supply includes an input rectifier that receives sinusoidal or alternating line voltage and provides a rectified voltage. A pre-regulator provides a dc bus and a convertor, such as a boost convertor, provides a welding output. The pre-regulator is an SVT (slow voltage transition) and an SCT (slow current transition) switched convertor. It may include a snubber circuit having a diode that is SVT switched. Also, the boost convertor may be SVT and SCT switched. The pre-regulator preferably includes a power factor correction circuit. The power source includes, in one embodiment, an inverter having a snubber circuit having a first switch in anti-parallel with a first diode, and a second switch in anti-parallel with a second diode. The first switch and first diode are connected in series with the second switch and the second diode, and the first and second switches are connected in opposing directions, to form a switched snubber.