摘要:
A method of dynamically balancing a hole enlargement system is disclosed. The method includes modeling the hole enlargement system based on input parameters, simulating the hole enlargement system, adjusting one or more of the input parameters, and repeating the modeling, simulating, and adjusting until a balanced condition is met.
摘要:
A novel rolling cone rock bit includes a plurality of PDC or other cutters mounted to the leg of the drill bit and positioned to cut the troublesome corner of the bottomhole. The plurality of cutters may be the primary cutting component at gage diameter, or may be redundant to gage teeth on a rolling cutter that cut to gage diameter. Consequently, the occurrence of undergage drilling from the wear and failure of the gage row on a rolling cutter is lessened. Another inventive feature is the inclusion of a mud ramp that creates a large junk slot from the borehole bottom up the drill bit. The resulting pumping action of the drill bit ramp speeds up the removal of chips or drilling cuttings from the bottom of the borehole, reduces the level of hydrostatic pressure at the bottom of the borehole and minimizes the wearing effect of cone inserts regrinding damaging drill cuttings.
摘要:
A fixed-head drill bit includes a bit body having a plurality of cutting elements and at least one wear knuckle disposed on the bit body. Each cutting element includes a cutting surface defining a swept cutting profile when the bit is rotated about an axis. The at least one wear knuckle is positioned at least partially within and extending at least partially outside a selected one or more of the swept cutting profiles, allowing the fixed-head drill bit to wear into a more stable configuration.
摘要:
A method for improving drilling performance of a drilling tool assembly is disclosed. The method includes identifying a drilling performance parameter to be improved. One or more potential solutions are defined to improve the drilling performance parameter. A drilling simulation is performed to determine the dynamic response of the drilling tool assembly during a drilling operation. Determining the dynamic response includes determining the interaction of a cutting element of a drill bit with an earth formation. Improvement in the drilling performance parameter is determined based upon the drilling simulation.
摘要:
A method for designing a roller cone drill bit comprising selecting initial bit design parameters, selecting initial earth formations parameters, selecting initial drilling parameters, simulating drilling a selected earth formation, determining stress on at least one of the group of cutting element, cone, and drill bit, determining velocity of at least one of the group of cutting element, cone, and drill bit, calculating wear, varying at least one of the bit design parameters and repeating the simulating and the calculating until the wear meets a selected criterion. The method further comprises normalizing said calculated wear, and converting said normalized wear into a visual representation.
摘要:
A method for simulating the drilling performance of a roller cone bit drilling an earth formation may be used to generate a visual representation of drilling, to design roller cone drill bits, and to optimize the drilling performance of a roller cone bit. The method for generating a visual representation of a roller cone bit drilling earth formations includes selecting bit design parameters, selecting drilling parameters, and selecting an earth formation to be drilled. The method further includes calculating, from the bit design parameters, drilling parameters and earth formation, parameters of a crater formed when one of a plurality of cutting elements contacts the earth formation. The method further includes calculating a bottomhole geometry, wherein the crater is removed from a bottomhole surface. The method also includes incrementally rotating the bit and repeating the calculating of crater parameters and bottomhole geometry based on calculated roller cone rotation speed and geometrical location with respect to rotation of said roller cone drill bit about its axis. The method also includes converting the crater and bottomhole geometry parameters into a visual representation.
摘要:
A method for designing a drill bit that has at least one roller cone and a plurality of cutting elements, including selecting initial bit design parameters. Drilling simulations are then used to determine wear, and the simulated drill bit is changed to reflect the determined wear. Then, at least one design parameter is adjusted. The simulation, determination, change of the simulated drill bit, and adjustment may be repeated until at least one performance parameter of the drill bit is optimized. A drill bit can be designed using such a method.
摘要:
The invention is directed to a roller cone drill for drilling earth formations. The drill bit includes a bit body and a plurality of roller cones attached to the bit body and able to rotate with respect to the bit body. The drill bit further includes a plurality of teeth disposed on each of the roller cones such that the number of teeth on each cone differs by two or fewer from the number of teeth on each of the other cones. In one preferred embodiment, the drill bit includes three roller cones. In another preferred embodiment, the teeth of the bit are arranged on each cone so that teeth on adjacent cones intermesh between the cones. In another preferred embodiment, the drill bit includes a first cone, a second cone, and a third cone, and the number of teeth on each of the cones is 17, 16, and 18, respectively.
摘要:
A method for designing a drilling tool assembly, having a drill bit disposed at one end includes defining initial drilling tool assembly design parameters; calculating a dynamic response of the drilling tool assembly; adjusting a value of a drilling tool assembly design parameter; and repeating the calculating and the adjusting until a drilling tool assembly performance parameter is optimized.
摘要:
Polycrystalline diamond composites comprise a polycrystalline diamond body having a plurality of ultra-hard discrete regions dispersed within a polycrystalline diamond second region. The plurality of discrete regions has an density different from of the polycrystalline diamond second region. A metallic substrate can be joined to the body. The discrete regions can be relatively more thermal stable than, have a higher diamond density than, and/or may comprise a binder material that is different from the polycrystalline diamond second region. Polycrystalline diamond composites can be formed by combining already sintered granules with diamond grains to form a mixture, and subjecting the mixture to high pressure/high temperature conditions, wherein the granules form the plurality of discrete regions, or can be made by forming a plurality of unsintered granules, combining them with diamond grains to form a mixture, and then subjecting the mixture to first and second high pressure/high temperature conditions.