Abstract:
An illustrative “VM heartbeat monitoring network” of heartbeat monitor nodes monitors target VMs in a data storage management system. Accordingly, target VMs are distributed and re-distributed among illustrative worker monitor nodes according to preferences in an illustrative VM distribution logic. Worker heartbeat monitor nodes use an illustrative ping monitoring logic to transmit special-purpose heartbeat packets to respective target VMs and to track ping responses. If a target VM is ultimately confirmed failed by its worker monitor node, an illustrative master monitor node triggers an enhanced storage manager to initiate failover for the failed VM. The enhanced storage manager communicates with the heartbeat monitor nodes and also manages VM failovers and other storage management operations in the system. Special features for cloud-to-cloud failover scenarios enable a VM in a first region of a public cloud to fail over to a second region.
Abstract:
An illustrative storage management appliance is interposed between client computing devices and one or more cloud storage resources. The appliance uses cloud storage resources in conjunction with a network attached storage device configured within the appliance to provide to the client computing devices seemingly unlimited network attached storage on respective network shares. The storage management appliance monitors data objects on the network shares and when a data object meets one or more criteria for archiving, the storage management appliance archives the data object to a cloud storage resource and replaces it with a stub and preview image on the network share. When access to the stub and/or preview image is detected, the storage management appliance restores the data object from the cloud storage resource. The criteria for archiving flexibly allow individual data objects to be archived to cloud storage without archiving frequently-accessed “neighboring” data objects on the same network share.
Abstract:
A storage manager that interoperates with a file manager application that integrates with virtualization substantially enables end-user control and storage management of virtual machines (VMs). The storage manager may manage information management operations relative to virtual machines based on and/or in response to messages and/or instructions received from the file manager application. The storage manager may further report results to the file manager application for presentation to the user. The file manager application, which may operate as a plug-in for a legacy file manager executing on a user's client computing device, may comprise: displaying the VMs associated with the user, including their respective properties; enabling viewing/browsing of information about storage management operations for a VM such as backups and/or archiving, including files associated with the VM and searching and filtering criteria; control features that enable the user to control existing VMs, such as shut down, restart/activate/power-on, suspend, and/or re-configure, and also perform storage management of a VM and/or its associated files, such as create snapshot, back up, archive, restore VM from secondary storage, restore and overwrite VM, restore file(s)/folder(s) to user's client computing device, restore file(s)/folder(s) to a production VM in primary storage, etc.; control features that enable the user to provision additional VMs, such as create a new VM, create a clone VM, configure a VM, etc.
Abstract:
An illustrative “VM heartbeat monitoring network” of heartbeat monitor nodes monitors target VMs in a data storage management system. Accordingly, target VMs are distributed and re-distributed among illustrative worker monitor nodes according to preferences in an illustrative VM distribution logic. Worker heartbeat monitor nodes use an illustrative ping monitoring logic to transmit special-purpose heartbeat packets to respective target VMs and to track ping responses. If a target VM is ultimately confirmed failed by its worker monitor node, an illustrative master monitor node triggers an enhanced storage manager to initiate failover for the failed VM. The enhanced storage manager communicates with the heartbeat monitor nodes and also manages VM failovers and other storage management operations in the system. Special features for cloud-to-cloud failover scenarios enable a VM in a first region of a public cloud to fail over to a second region.
Abstract:
Systems described herein may dynamically add one or more proxy agents to a cloud data storage system to process an information management job, such as restore job. Upon completion of the job or at some other appropriate interval, the system can power down and decommission the proxy agents and/or the virtual machines on which the proxies reside according to a cleanup schedule (e.g., at hourly or minute intervals). The system takes into account currently existing proxies or virtual machines when processing a restore request to determine the need for new proxies to service the restore request. In this manner the system can save costs and computing resources through efficient virtual machine deployment and retirement.
Abstract:
An illustrative storage management appliance is interposed between client computing devices and one or more cloud storage resources. The appliance uses cloud storage resources in conjunction with a network attached storage device configured within the appliance to provide to the client computing devices seemingly unlimited network attached storage on respective network shares. The storage management appliance monitors data objects on the network shares and when a data object meets one or more criteria for archiving, the storage management appliance archives the data object to a cloud storage resource and replaces it with a stub and preview image on the network share. When access to the stub and/or preview image is detected, the storage management appliance restores the data object from the cloud storage resource. The criteria for archiving flexibly allow individual data objects to be archived to cloud storage without archiving frequently-accessed “neighboring” data objects on the same network share.
Abstract:
Systems described herein may dynamically add one or more proxy data protection agents to a cloud data storage system to process a data protection job. Upon completion of the job or at some other appropriate interval, the system can power down and decommission the proxy data protection agents and/or the virtual machines on which the data protection proxies reside according to a cleanup schedule (e.g., at hourly or minute intervals). In order to improve the allocation of computing resources, the system takes into account currently existing proxies or virtual machines when processing a backup request to determine the need for new proxies to service the backup request. In this manner the system can save costs and computing resources through efficient virtual machine deployment and retirement.
Abstract:
An illustrative storage management appliance is interposed between client computing devices and one or more cloud storage resources. The appliance uses cloud storage resources in conjunction with a network attached storage device configured within the appliance to provide to the client computing devices seemingly unlimited network attached storage on respective network shares. The storage management appliance monitors data objects on the network shares and when a data object meets one or more criteria for archiving, the storage management appliance archives the data object to a cloud storage resource and replaces it with a stub and preview image on the network share. When access to the stub and/or preview image is detected, the storage management appliance restores the data object from the cloud storage resource. The criteria for archiving flexibly allow individual data objects to be archived to cloud storage without archiving frequently-accessed “neighboring” data objects on the same network share.
Abstract:
An illustrative “VM heartbeat monitoring network” of heartbeat monitor nodes monitors target VMs in a data storage management system. Accordingly, target VMs are distributed and re-distributed among illustrative worker monitor nodes according to preferences in an illustrative VM distribution logic. Worker heartbeat monitor nodes use an illustrative ping monitoring logic to transmit special-purpose heartbeat packets to respective target VMs and to track ping responses. If a target VM is ultimately confirmed failed by its worker monitor node, an illustrative master monitor node triggers an enhanced storage manager to initiate failover for the failed VM. The enhanced storage manager communicates with the heartbeat monitor nodes and also manages VM failovers and other storage management operations in the system. Special features for cloud-to-cloud failover scenarios enable a VM in a first region of a public cloud to fail over to a second region.
Abstract:
A storage manager that interoperates with a file manager application that integrates with virtualization substantially enables end-user control and storage management of virtual machines (VMs). The storage manager may manage information management operations relative to virtual machines based on and/or in response to messages and/or instructions received from the file manager application. The storage manager may further report results to the file manager application for presentation to the user. The file manager application, which may operate as a plug-in for a legacy file manager executing on a user's client computing device, may comprise: displaying the VMs associated with the user, including their respective properties; enabling viewing/browsing of information about storage management operations for a VM such as backups and/or archiving, including files associated with the VM and searching and filtering criteria; control features that enable the user to control existing VMs, such as shut down, restart/activate/power-on, suspend, and/or re-configure, and also perform storage management of a VM and/or its associated files, such as create snapshot, back up, archive, restore VM from secondary storage, restore and overwrite VM, restore file(s)/folder(s) to user's client computing device, restore file(s)/folder(s) to a production VM in primary storage, etc.; control features that enable the user to provision additional VMs, such as create a new VM, create a clone VM, configure a VM, etc.