Abstract:
Methods and apparatuses for reducing the effects of motion in a core-in-shell type heat exchanger are provided. One apparatus includes: (a) a heat exchanger, wherein the heat exchanger includes an internal volume defined within a shell and a plurality of spaced apart cores disposed within the internal volume of the shell, wherein the internal volume is flooded with a vaporizing fluid; and (b) a separation vessel connected to the heat exchanger, wherein the separation vessel is located at higher elevation than the heat exchanger, wherein the separation vessel is connected to the heat exchanger in such a manner so as to deliver a hot feed stream to heat exchanger and the receive a non-vaporizing stream from the heat exchanger.
Abstract:
An embodiment of a method for supplying refrigerants to a liquefied natural gas (LNG) facility includes: advancing a first refrigerant from a first storage device to a heat exchanger, the first refrigerant having a first temperature; advancing a second refrigerant from a second storage device to the heat exchanger, the second refrigerant having a second temperature different than the first temperature; flowing the first refrigerant and the second refrigerant through the heat exchanger; adjusting the second temperature based on at least a transfer of heat between the first refrigerant and the second refrigerant in the heat exchanger; and transferring the first refrigerant and the second refrigerant to the LNG facility.
Abstract:
The invention relates to a system, method and apparatus for processing natural gas in an LNG facility. A natural gas feed is introduced into a heavies removal unit. The heavies removal system includes a heavies removal column and a distillation column. The heavies removal column and the distillation column are connected via a purge/recovery line. One or more components of the natural gas feed is purged from the heavies removal column to the distillation column via the purge/recovery line to obtain a specified concentration or concentration range of heavy components feeding into the distillation column.
Abstract:
A heat exchanger system includes a core-in-shell heat exchanger and a liquid/gas separator. The liquid/gas separator is configured to receive a liquid/gas mixture and to separate the gas from the liquid. The liquid/gas separator is connected to the core-in-shell heat exchanger via a first line for transmitting gas from the liquid/gas separator to a first region in the core-in-shell heat exchanger and connected to the core-in-shell heat exchanger via a second line for transmitting liquid from the liquid/gas separator to a second region of the core-in-shell heat exchanger
Abstract:
A core-in-shell heat exchanger, a method of fabricating the core-in-shell heat exchanger, and a method of exchanging heat in a core-in-shell heat exchanger disposed on a slosh-inducing moving platform are described. The method of exchanging heat includes introducing a shell-side fluid into a shell of the core-in-shell heat exchanger and introducing a fluid to be cooled into each of one or more cores of the core-in-shell heat exchanger, the one or more cores being arranged along an axial length of the shell with a plurality of baffles disposed on either side of the one or more cores along the axial length of the shell to reduce slosh of the shell-side fluid. The method also includes draining excess shell-side fluid using a plurality of drains, at least two of the plurality of drains being disposed on opposite sides of one of the plurality of baffles.