Abstract:
The invention relates to various nonlimiting embodiments that include methods, apparatuses or systems for processing natural gas comprising a heavies removal column processing natural gas and light oil reflux. The overhead stream goes to heavies treated natural gas storage. The heavies removal column reboiler bottoms stream product is input to a debutanizer column. The debutanizer column overhead lights are input to a flash drum where the bottoms is pumped through a heat exchanger as a light oil reflux input to the heavies removal column, while the debutanizer reboiler bottoms product is stored as stabilized condensate. Alternatively, debutanizer column overhead lights are sent to heavies treated gas storage and the bottoms stream product goes to a depentanizer column, the overhead lights are pumped through a heat exchanger as a light oil reflux input to the heavies removal column, while the depentanizer reboiler bottoms product is stabilized condensate.
Abstract:
The invention relates to a system, method and apparatus for removing heavies from natural gas. Natural gas and an external rich reflux gas feed are processed in a single column refluxed absorber. A bottoms stream is routed to a first heat exchanger and then to a stabilizer column where an overhead stream from the stabilizer column is routed through a condenser for partial separation into an overhead stream. A rich solvent may be introduced to the stabilizer column. The overhead stream is routed through a condenser for partial separation into a stabilizer reflux and a second overhead stream lights. The second overhead stream lights is routed to a heat exchanger and then routed to a partial condenser where the stream is separated into a heavies rich reflux stream, a distillate stream and heavies treated natural gas stream. The rich reflux is routed through a heat exchanger and the rich reflux is pumped to the single column refluxed absorber to be introduced into the single column refluxed absorber as the external rich reflux gas feed.
Abstract:
The invention relates to various nonlimiting embodiments that include methods, apparatuses or systems for processing natural gas comprising a heavies removal column processing natural gas and light oil reflux. The overhead stream goes to heavies treated natural gas storage. The heavies removal column reboiler bottoms stream product is input to a debutanizer column. The debutanizer column overhead lights are input to a flash drum where the bottoms is pumped through a heat exchanger as a light oil reflux input to the heavies removal column, while the debutanizer reboiler bottoms product is stored as stabilized condensate. Alternatively, debutanizer column overhead lights are sent to heavies treated gas storage and the bottoms stream product goes to a depentanizer column, the overhead lights are pumped through a heat exchanger as a light oil reflux input to the heavies removal column, while the depentanizer reboiler bottoms product is stabilized condensate.
Abstract:
A heat exchanger system includes a core-in-shell heat exchanger and a liquid/gas separator. The liquid/gas separator is configured to receive a liquid/gas mixture and to separate the gas from the liquid. The liquid/gas separator is connected to the core-in-shell heat exchanger via a first line for transmitting gas from the liquid/gas separator to a first region in the core-in-shell heat exchanger and connected to the core-in-shell heat exchanger via a second line for transmitting liquid from the liquid/gas separator to a second region of the core-in-shell heat exchanger
Abstract:
Apparatuses and methods for suppressing slosh in a core-in-shell type heat exchanger are provided. One embodiments provides a heat exchanger including: (a) an internal volume defined within a shell; (b) a plurality of spaced apart cores disposed within the internal volume of the shell, and (c) slosh suppressing baffles disposed within the internal volume to separate the plurality of spaced apart cores, wherein each core is partially submerged in a liquid shell-side fluid, wherein the slosh suppressing baffles allow limited distribution of the liquid shell-side fluid between each core, wherein the slosh suppressing baffles can withstand cryogenic temperatures, wherein the slosh suppressing baffles can withstand and divert the flow of the liquid shell-side fluid between each core.
Abstract:
The invention relates to a system, method and apparatus for removing heavies from natural gas. Natural gas and an external rich reflux gas feed are processed in a single column refluxed absorber. A bottoms stream is routed to a first heat exchanger and then to a stabilizer column where an overhead stream from the stabilizer column is routed through a condenser for partial separation into an overhead stream. A rich solvent may be introduced to the stabilizer column. The overhead stream is routed through a condenser for partial separation into a stabilizer reflux and a second overhead stream lights. The second overhead stream lights is routed to a heat exchanger and then routed to a partial condenser where the stream is separated into a heavies rich reflux stream, a distillate stream and heavies treated natural gas stream. The rich reflux is routed through a heat exchanger and the rich reflux is pumped to the single column refluxed absorber to be introduced into the single column refluxed absorber as the external rich reflux gas feed.
Abstract:
The invention relates to various nonlimiting embodiments that include methods, apparatuses or systems for processing natural gas comprising a heavies removal column processing natural gas and light oil reflux. The overhead stream goes to heavies treated natural gas storage. The heavies removal column reboiler bottoms stream product is input to a debutanizer column. The debutanizer column overhead lights are input to a flash drum where the bottoms is pumped through a heat exchanger as a light oil reflux input to the heavies removal column, while the debutanizer reboiler bottoms product is stored as stabilized condensate. Alternatively, debutanizer column overhead lights are sent to heavies treated gas storage and the bottoms stream product goes to a depentanizer column, the overhead lights are pumped through a heat exchanger as a light oil reflux input to the heavies removal column, while the depentanizer reboiler bottoms product is stabilized condensate.
Abstract:
A core-in-shell heat exchanger, a method of fabricating the core-in-shell heat exchanger, and a method of exchanging heat in a core-in-shell heat exchanger disposed on a slosh-inducing moving platform are described. The method of exchanging heat includes introducing a shell-side fluid into a shell of the core-in-shell heat exchanger and introducing a fluid to be cooled into each of one or more cores of the core-in-shell heat exchanger, the one or more cores being arranged along an axial length of the shell with a plurality of baffles disposed on either side of the one or more cores along the axial length of the shell to reduce slosh of the shell-side fluid. The method also includes draining excess shell-side fluid using a plurality of drains, at least two of the plurality of drains being disposed on opposite sides of one of the plurality of baffles.
Abstract:
An embodiment of a method for supplying refrigerants to a liquefied natural gas (LNG) facility includes: advancing a first refrigerant from a first storage device to a heat exchanger, the first refrigerant having a first temperature; advancing a second refrigerant from a second storage device to the heat exchanger, the second refrigerant having a second temperature different than the first temperature; flowing the first refrigerant and the second refrigerant through the heat exchanger; adjusting the second temperature based on at least a transfer of heat between the first refrigerant and the second refrigerant in the heat exchanger; and transferring the first refrigerant and the second refrigerant to the LNG facility.
Abstract:
A conduit seal assembly includes an outer conduit having a first end with a first opening and a second end, opposite the first end, with a second opening. A first seal is positioned in the first opening for resisting a first temperature, and a second seal is positioned in the second opening for resisting a second temperature less than the first temperature. The first and second seals define a cavity and provide an air-tight seal of the cavity, and the assembly includes a monitoring assembly configured to sense a characteristic in the cavity.