Abstract:
An embodiment of the present invention provides a power amplifier, comprising tunable impedance matching circuit including a plurality of tunable dielectric varactors and a DC voltage source interface capable of providing voltage to said plurality of said tunable dielectric varactors.
Abstract:
An embodiment of the present invention provides an apparatus, comprising a delay line and a matching network coupled to the delay line, the matching network including a plurality of voltage tunable dielectric varactors.
Abstract:
An impedance matching circuit includes a conductor line having an input port and an output port, a ground conductor, a tunable dielectric material positioned between a first section of the conductor line and the ground conductor, a non-tunable dielectric material positioned between a second section of the conductor line and the ground conductor, and means for applying a DC voltage between the conductor line and the ground conductor. The impedance matching circuit may alternatively include a first planar ground conductor, a second planar ground conductor, a strip conductor having an input port and an output port, and positioned between the first and second planar ground conductors to define first and second gaps, the first gap being positioned between the strip conductor and the first planar ground conductor and the second gap being positioned between the strip conductor and the second planar ground conductor. A non-tunable dielectric material supports the first and second planar ground conductors and the strip conductor in the same plane. A connection is provided for applying a DC voltage between the strip conductor and the first and second planar ground conductors. A plurality of tunable dielectric layer sections are positioned between the strip conductor and the first and second planar ground conductors so as to bridge the gaps between the said first and second planar ground conductors and the strip conductor at a plurality of locations, leaving non-bridged sections in between, defining a plurality of alternating bridged and non-bridged co-planar waveguide sections.
Abstract:
An embodiment of the present invention provides a phase shifter, comprising: a base dielectric layer; a tunable dielectric layer overlaying at least a portion of the base dielectric layer; and at least two conductors overlaying at least a portion of the tunable dielectric layer, the at least two conductors positioned so as to form a slot-line topology. In an embodiment of the present invention the slot-line may be between 2 μm and 5 μm wide and the tunable dielectric layer may be between 0.3 μm to 1.5 μm thick. Further, the slot-line topology may be a uniform slot-line topology throughout the length of the at least two conductors and the slot-line topology may have an edge ratio defined by r=Llow/(Llow+Lhigh). The edge ratio may be optimized for minimizing metal loss and minimizing dielectric loss for a given phase shifter length. In an embodiment of the present invention the value of r may be between 0.1 and 0.2.
Abstract:
A stacked antenna, comprising an upper patch including at least one strip-like part formed from a hole in the upper patch and at least one slot-like part formed from at least one notch in the upper patch; a lower patch including at least one strip-like part formed from a hole in the lower patch and at least one slot-like part formed from at least one notch in the lower patch; and wherein the at least one strip-like part of the upper patch is at least partially crossing over the at least one notch in the lower patch In and embodiment of the present invention, the a portion of the at least one strip-like part of the lower patch is at least partially crossing under a hole in the upper patch and may further comprise at least one microstrip feed capable of connecting a ground plane with the lower patch.
Abstract:
A tunable patch antenna is described herein that includes a ground plane on which there is located a substrate and on which there is located a patch. The patch is split into two parts (e.g., rectangular parts) which are connected to one another by one or more voltage-tunable series capacitors. Each part has a radiating edge which is connected to one or more voltage-tunable edge capacitors. Also described herein, is a method for electronically tuning the tunable patch antenna to any frequency within a band of operation which is in a range of about 30% of the center frequency of operation.
Abstract:
A stacked antenna comprising a first patch including at least one slot-like part thereon, a second patch including at least one strip-like part thereon; and wherein the at least one slot-like part of the first patch at least partially crosses over or partially crosses under the at least one strip-like part of the second patch thereby forming a coupling region. The at least one slot-like part may be formed by at least one notch in the first patch and the at least one strip-like part may be formed by at least one hole in the second patch.
Abstract:
A stacked antenna, comprising an upper patch including at least one strip-like part formed from a hole in the upper patch and at least one slot-like part formed from at least one notch in the upper patch; a lower patch including at least one strip-like part formed from a hole in the lower patch and at least one slot-like part formed from at least one notch in the lower patch; and wherein the at least one strip-like part of the upper patch is at least partially crossing over the at least one notch in the lower patch. In and embodiment of the present invention, the a portion of the at least one strip-like part of the lower patch is at least partially crossing under a hole in the upper patch and may further comprise at least one microstrip feed capable of connecting a ground plane with the lower patch.
Abstract:
An embodiment of the present invention provides an apparatus, comprising an input port and a dynamic impedance matching network capable of determining a mismatch at the input port and dynamically changing the RF match by using at least one matching element that includes at least one voltage tunable dielectric capacitor. The matching network may be a “Pi”, a “T”, or “ladder” type network and the apparatus may further comprise at least one directional coupler capable of signal collection by sampling a portion of an incident signal, a reflected signal or both. In an embodiment of the present invention, the apparatus may also include a control and power control & logic unit (PC LU) to convert input analog signals into digital signals and sensing VSWR phase and magnitude and processing the digital signals using an algorithm to give it a voltage value and wherein the voltage values may be compared to values coming from the coupler and once compared and matched, the values may be passed to a Hi Voltage Application Specific Integrated Circuit (HV ASIC) to transfer and distribute compensatory voltages to the matching network elements.
Abstract:
An embodiment of the present invention provides a power amplifier, comprising tunable impedance matching circuit including a plurality of tunable dielectric varactors and a DC voltage source interface capable of providing voltage to said plurality of saud tunable dielectric varactors.