Abstract:
An embodiment of the present invention provides a phase shifter, comprising: a base dielectric layer; a tunable dielectric layer overlaying at least a portion of the base dielectric layer; and at least two conductors overlaying at least a portion of the tunable dielectric layer, the at least two conductors positioned so as to form a slot-line topology. In an embodiment of the present invention the slot-line may be between 2 μm and 5 μm wide and the tunable dielectric layer may be between 0.3 μm to 1.5 μm thick. Further, the slot-line topology may be a uniform slot-line topology throughout the length of the at least two conductors and the slot-line topology may have an edge ratio defined by r=Llow/(Llow+Lhigh). The edge ratio may be optimized for minimizing metal loss and minimizing dielectric loss for a given phase shifter length. In an embodiment of the present invention the value of r may be between 0.1 and 0.2.
Abstract:
A stacked antenna, comprising an upper patch including at least one strip-like part formed from a hole in the upper patch and at least one slot-like part formed from at least one notch in the upper patch; a lower patch including at least one strip-like part formed from a hole in the lower patch and at least one slot-like part formed from at least one notch in the lower patch; and wherein the at least one strip-like part of the upper patch is at least partially crossing over the at least one notch in the lower patch In and embodiment of the present invention, the a portion of the at least one strip-like part of the lower patch is at least partially crossing under a hole in the upper patch and may further comprise at least one microstrip feed capable of connecting a ground plane with the lower patch.
Abstract:
A tunable patch antenna is described herein that includes a ground plane on which there is located a substrate and on which there is located a patch. The patch is split into two parts (e.g., rectangular parts) which are connected to one another by one or more voltage-tunable series capacitors. Each part has a radiating edge which is connected to one or more voltage-tunable edge capacitors. Also described herein, is a method for electronically tuning the tunable patch antenna to any frequency within a band of operation which is in a range of about 30% of the center frequency of operation.
Abstract:
An impedance matching circuit includes a conductor line having an input port and an output port, a ground conductor, a tunable dielectric material positioned between a first section of the conductor line and the ground conductor, a non-tunable dielectric material positioned between a second section of the conductor line and the ground conductor, and means for applying a DC voltage between the conductor line and the ground conductor. The impedance matching circuit may alternatively include a first planar ground conductor, a second planar ground conductor, a strip conductor having an input port and an output port, and positioned between the first and second planar ground conductors to define first and second gaps, the first gap being positioned between the strip conductor and the first planar ground conductor and the second gap being positioned between the strip conductor and the second planar ground conductor. A non-tunable dielectric material supports the first and second planar ground conductors and the strip conductor in the same plane. A connection is provided for applying a DC voltage between the strip conductor and the first and second planar ground conductors. A plurality of tunable dielectric layer sections are positioned between the strip conductor and the first and second planar ground conductors so as to bridge the gaps between the said first and second planar ground conductors and the strip conductor at a plurality of locations, leaving non-bridged sections in between, defining a plurality of alternating bridged and non-bridged co-planar waveguide sections.
Abstract:
An embodiment of the present invention provides an apparatus, comprising a power amplifier with a tunable impedance matching circuit including a plurality of tunable dielectric varactors and a DC voltage source interface capable of providing voltage to said plurality of saud tunable dielectric varactors.
Abstract:
An embodiment of the present invention provides an apparatus, comprising a power amplifier with a tunable impedance matching circuit including a plurality of tunable dielectric varactors and a DC voltage source interface capable of providing voltage to said plurality of saud tunable dielectric varactors.
Abstract:
An impedance matching circuit includes a conductor line having an input port and an output port, a ground conductor, a tunable dielectric material positioned between a first section of the conductor line and the ground conductor, a non-tunable dielectric material positioned between a second section of the conductor line and the ground conductor, and means for applying a DC voltage between the conductor line and the ground conductor. The impedance matching circuit may alternatively include a first planar ground conductor, a second planar ground conductor, a strip conductor having an input port and an output port, and positioned between the first and second planar ground conductors to define first and second gaps, the first gap being positioned between the strip conductor and the first planar ground conductor and the second gap being positioned between the strip conductor and the second planar ground conductor. A non-tunable dielectric material supports the first and second planar ground conductors and the strip conductor in the same plane. A connection is provided for applying a DC voltage between the strip conductor and the first and second planar ground conductors. A plurality of tunable dielectric layer sections are positioned between the strip conductor and the first and second planar ground conductors so as to bridge the gaps between the said first and second planar ground conductors and the strip conductor at a plurality of locations, leaving non-bridged sections in between, defining a plurality of alternating bridged and non-bridged co-planar waveguide sections.
Abstract:
An embodiment of the present invention provides a power amplifier, comprising tunable impedance matching circuit including a plurality of tunable dielectric varactors and a DC voltage source interface capable of providing voltage to said plurality of said tunable dielectric varactors.
Abstract:
A stacked antenna comprising a first patch including at least one slot-like part thereon, a second patch including at least one strip-like part thereon; and wherein the at least one slot-like part of the first patch at least partially crosses over or partially crosses under the at least one strip-like part of the second patch thereby forming a coupling region. The at least one slot-like part may be formed by at least one notch in the first patch and the at least one strip-like part may be formed by at least one hole in the second patch.
Abstract:
A variable impedance circuit includes a matching network for coupling to a tunable device, where the matching network has a first port and a second port, where the tunable device is coupled to one of the first port or the second port, and where the matching network has one or more variable dielectric capacitors. The one or more variable dielectric capacitors can be operable to receive a first of one or more variable voltage signals to cause the one or more variable dielectric capacitors to change a first impedance of the matching network. The tunable device can be operable to receive a second of one or more variable voltage signals to cause a change in a second impedance of the tunable device.