-
公开(公告)号:US11775804B2
公开(公告)日:2023-10-03
申请号:US17201542
申请日:2021-03-15
Applicant: DeepMind Technologies Limited
Inventor: Neil Charles Rabinowitz , Guillaume Desjardins , Andrei-Alexandru Rusu , Koray Kavukcuoglu , Raia Thais Hadsell , Razvan Pascanu , James Kirkpatrick , Hubert Josef Soyer
Abstract: Methods and systems for performing a sequence of machine learning tasks. One system includes a sequence of deep neural networks (DNNs), including: a first DNN corresponding to a first machine learning task, wherein the first DNN comprises a first plurality of indexed layers, and each layer in the first plurality of indexed layers is configured to receive a respective layer input and process the layer input to generate a respective layer output; and one or more subsequent DNNs corresponding to one or more respective machine learning tasks, wherein each subsequent DNN comprises a respective plurality of indexed layers, and each layer in a respective plurality of indexed layers with index greater than one receives input from a preceding layer of the respective subsequent DNN, and one or more preceding layers of respective preceding DNNs, wherein a preceding layer is a layer whose index is one less than the current index.
-
公开(公告)号:US11755879B2
公开(公告)日:2023-09-12
申请号:US16272880
申请日:2019-02-11
Applicant: DeepMind Technologies Limited
Inventor: Razvan Pascanu , William Clinton Dabney , Thomas Stepleton
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for processing and storing inputs for use in a neural network. One of the methods includes receiving input data for storage in a memory system comprising a first set of memory blocks, the memory blocks having an associated order; passing the input data to a highest ordered memory block; for each memory block for which there is a lower ordered memory block: applying a filter function to data currently stored by the memory block to generate filtered data and passing the filtered data to a lower ordered memory block; and for each memory block: combining the data currently stored in the memory block with the data passed to the memory block to generate updated data, and storing the updated data in the memory block.
-
公开(公告)号:US20230124177A1
公开(公告)日:2023-04-20
申请号:US17914035
申请日:2021-06-04
Applicant: DeepMind Technologies Limited
Inventor: Siddhant Madhu Jayakumar , Razvan Pascanu , Jack William Rae , Simon Osindero , Erich Konrad Elsen
IPC: G06N3/08 , G06F18/211
Abstract: A computer-implemented method of training a neural network. The method comprises repeatedly determining a forward-pass set of network parameters by selecting a first sub-set of parameters of the neural network and setting all other parameters of the forward-pass set of network parameters to zero. The method then processes a training data item using the neural network in accordance with the forward-pass set of network parameters to generate a neural network output, determines a value of an objective function from the neural network output and the training data item, selects a second sub-set of network parameters, determines a backward-pass set of network parameters comprising the first and second sub-sets of parameters, and updates parameters corresponding to the backward-pass set of network parameters using a gradient estimate determined from the value of the objective function.
-
公开(公告)号:US11534911B2
公开(公告)日:2022-12-27
申请号:US16829237
申请日:2020-03-25
Applicant: DeepMind Technologies Limited
Inventor: Razvan Pascanu , Raia Thais Hadsell , Mel Vecerik , Thomas Rothoerl , Andrei-Alexandru Rusu , Nicolas Manfred Otto Heess
Abstract: A system includes a neural network system implemented by one or more computers. The neural network system is configured to receive an observation characterizing a current state of a real-world environment being interacted with by a robotic agent to perform a robotic task and to process the observation to generate a policy output that defines an action to be performed by the robotic agent in response to the observation. The neural network system includes: (i) a sequence of deep neural networks (DNNs), in which the sequence of DNNs includes a simulation-trained DNN that has been trained on interactions of a simulated version of the robotic agent with a simulated version of the real-world environment to perform a simulated version of the robotic task, and (ii) a first robot-trained DNN that is configured to receive the observation and to process the observation to generate the policy output.
-
公开(公告)号:US11328183B2
公开(公告)日:2022-05-10
申请号:US17019919
申请日:2020-09-14
Applicant: DeepMind Technologies Limited
Inventor: Daniel Pieter Wierstra , Yujia Li , Razvan Pascanu , Peter William Battaglia , Theophane Guillaume Weber , Lars Buesing , David Paul Reichert , Arthur Clement Guez , Danilo Jimenez Rezende , Adrià Puigdomènech Badia , Oriol Vinyals , Nicolas Manfred Otto Heess , Sebastien Henri Andre Racaniere
Abstract: A neural network system is proposed. The neural network can be trained by model-based reinforcement learning to select actions to be performed by an agent interacting with an environment, to perform a task in an attempt to achieve a specified result. The system may comprise at least one imagination core which receives a current observation characterizing a current state of the environment, and optionally historical observations, and which includes a model of the environment. The imagination core may be configured to output trajectory data in response to the current observation, and/or historical observations. The trajectory data comprising a sequence of future features of the environment imagined by the imagination core. The system may also include a rollout encoder to encode the features, and an output stage to receive data derived from the rollout embedding and to output action policy data for identifying an action based on the current observation.
-
公开(公告)号:US11074481B2
公开(公告)日:2021-07-27
申请号:US16745757
申请日:2020-01-17
Applicant: DeepMind Technologies Limited
Inventor: Fabio Viola , Piotr Wojciech Mirowski , Andrea Banino , Razvan Pascanu , Hubert Josef Soyer , Andrew James Ballard , Sudarshan Kumaran , Raia Thais Hadsell , Laurent Sifre , Rostislav Goroshin , Koray Kavukcuoglu , Misha Man Ray Denil
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a geometry-prediction neural network, an intermediate output generated by the action selection policy neural network to predict a value of a feature of a geometry of the environment when in the current state; and backpropagating a gradient of a geometry-based auxiliary loss into the action selection policy neural network to determine a geometry-based auxiliary update for current values of the network parameters.
-
公开(公告)号:US20200090048A1
公开(公告)日:2020-03-19
申请号:US16689020
申请日:2019-11-19
Applicant: DeepMind Technologies Limited
Inventor: Razvan Pascanu , Raia Thais Hadsell , Victor Constant Bapst , Wojciech Czarnecki , James Kirkpatrick , Yee Whye Teh , Nicolas Manfred Otto Heess
Abstract: A method is proposed for training a multitask computer system, such as a multitask neural network system. The system comprises a set of trainable workers and a shared module. The trainable workers and shared module are trained on a plurality of different tasks, such that each worker learns to perform a corresponding one of the tasks according to a respective task policy, and said shared policy network learns a multitask policy which represents common behavior for the tasks. The coordinated training is performed by optimizing an objective function comprising, for each task: a reward term indicative of an expected reward earned by a worker in performing the corresponding task according to the task policy; and at least one entropy term which regularizes the distribution of the task policy towards the distribution of the multitask policy.
-
公开(公告)号:US20190266449A1
公开(公告)日:2019-08-29
申请号:US16403343
申请日:2019-05-03
Applicant: DeepMind Technologies Limited
Inventor: Fabio Viola , Piotr Wojciech Mirowski , Andrea Banino , Razvan Pascanu , Hubert Josef Soyer , Andrew James Ballard , Sudarshan Kumaran , Raia Thais Hadsell , Laurent Sifre , Rostislav Goroshin , Koray Kavukcuoglu , Misha Man Ray Denil
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. In one aspect, a method of training an action selection policy neural network for use in selecting actions to be performed by an agent navigating through an environment to accomplish one or more goals comprises: receiving an observation image characterizing a current state of the environment; processing, using the action selection policy neural network, an input comprising the observation image to generate an action selection output; processing, using a geometry-prediction neural network, an intermediate output generated by the action selection policy neural network to predict a value of a feature of a geometry of the environment when in the current state; and backpropagating a gradient of a geometry-based auxiliary loss into the action selection policy neural network to determine a geometry-based auxiliary update for current values of the network parameters.
-
公开(公告)号:US20240320469A1
公开(公告)日:2024-09-26
申请号:US18679200
申请日:2024-05-30
Applicant: DeepMind Technologies Limited
Inventor: Emilio Parisotto , Hasuk Song , Jack William Rae , Siddhant Madhu Jayakumar , Maxwell Elliot Jaderberg , Razvan Pascanu , Caglar Gulcehre
Abstract: A system including an attention neural network that is configured to receive an input sequence and to process the input sequence to generate an output is described. The attention neural network includes: an attention block configured to receive a query input, a key input, and a value input that are derived from an attention block input. The attention block includes an attention neural network layer configured to: receive an attention layer input derived from the query input, the key input, and the value input, and apply an attention mechanism to the query input, the key input, and the value input to generate an attention layer output for the attention neural network layer; and a gating neural network layer configured to apply a gating mechanism to the attention block input and the attention layer output of the attention neural network layer to generate a gated attention output.
-
公开(公告)号:US20240119262A1
公开(公告)日:2024-04-11
申请号:US18479775
申请日:2023-10-02
Applicant: DeepMind Technologies Limited
Inventor: Neil Charles Rabinowitz , Guillaume Desjardins , Andrei-Alexandru Rusu , Koray Kavukcuoglu , Raia Thais Hadsell , Razvan Pascanu , James Kirkpatrick , Hubert Josef Soyer
Abstract: Methods and systems for performing a sequence of machine learning tasks. One system includes a sequence of deep neural networks (DNNs), including: a first DNN corresponding to a first machine learning task, wherein the first DNN comprises a first plurality of indexed layers, and each layer in the first plurality of indexed layers is configured to receive a respective layer input and process the layer input to generate a respective layer output; and one or more subsequent DNNs corresponding to one or more respective machine learning tasks, wherein each subsequent DNN comprises a respective plurality of indexed layers, and each layer in a respective plurality of indexed layers with index greater than one receives input from a preceding layer of the respective subsequent DNN, and one or more preceding layers of respective preceding DNNs, wherein a preceding layer is a layer whose index is one less than the current index.
-
-
-
-
-
-
-
-
-