DATA-EFFICIENT REINFORCEMENT LEARNING FOR CONTINUOUS CONTROL TASKS

    公开(公告)号:US20200285909A1

    公开(公告)日:2020-09-10

    申请号:US16882373

    申请日:2020-05-22

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for data-efficient reinforcement learning. One of the systems is a system for training an actor neural network used to select actions to be performed by an agent that interacts with an environment by receiving observations characterizing states of the environment and, in response to each observation, performing an action selected from a continuous space of possible actions, wherein the actor neural network maps observations to next actions in accordance with values of parameters of the actor neural network, and wherein the system comprises: a plurality of workers, wherein each worker is configured to operate independently of each other worker, wherein each worker is associated with a respective agent replica that interacts with a respective replica of the environment during the training of the actor neural network.

    Data-efficient reinforcement learning for continuous control tasks

    公开(公告)号:US10664725B2

    公开(公告)日:2020-05-26

    申请号:US16528260

    申请日:2019-07-31

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for data-efficient reinforcement learning. One of the systems is a system for training an actor neural network used to select actions to be performed by an agent that interacts with an environment by receiving observations characterizing states of the environment and, in response to each observation, performing an action selected from a continuous space of possible actions, wherein the actor neural network maps observations to next actions in accordance with values of parameters of the actor neural network, and wherein the system comprises: a plurality of workers, wherein each worker is configured to operate independently of each other worker, wherein each worker is associated with a respective agent replica that interacts with a respective replica of the environment during the training of the actor neural network.

    NEURAL NETWORKS FOR SELECTING ACTIONS TO BE PERFORMED BY A ROBOTIC AGENT

    公开(公告)号:US20220355472A1

    公开(公告)日:2022-11-10

    申请号:US17872528

    申请日:2022-07-25

    Abstract: A system includes a neural network system implemented by one or more computers. The neural network system is configured to receive an observation characterizing a current state of a real-world environment being interacted with by a robotic agent to perform a robotic task and to process the observation to generate a policy output that defines an action to be performed by the robotic agent in response to the observation. The neural network system includes: (i) a sequence of deep neural networks (DNNs), in which the sequence of DNNs includes a simulation-trained DNN that has been trained on interactions of a simulated version of the robotic agent with a simulated version of the real-world environment to perform a simulated version of the robotic task, and (ii) a first robot-trained DNN that is configured to receive the observation and to process the observation to generate the policy output.

    NEURAL NETWORKS FOR SELECTING ACTIONS TO BE PERFORMED BY A ROBOTIC AGENT

    公开(公告)号:US20200223063A1

    公开(公告)日:2020-07-16

    申请号:US16829237

    申请日:2020-03-25

    Abstract: A system includes a neural network system implemented by one or more computers. The neural network system is configured to receive an observation characterizing a current state of a real-world environment being interacted with by a robotic agent to perform a robotic task and to process the observation to generate a policy output that defines an action to be performed by the robotic agent in response to the observation. The neural network system includes: (i) a sequence of deep neural networks (DNNs), in which the sequence of DNNs includes a simulation-trained DNN that has been trained on interactions of a simulated version of the robotic agent with a simulated version of the real-world environment to perform a simulated version of the robotic task, and (ii) a first robot-trained DNN that is configured to receive the observation and to process the observation to generate the policy output.

    Neural networks for selecting actions to be performed by a robotic agent

    公开(公告)号:US11534911B2

    公开(公告)日:2022-12-27

    申请号:US16829237

    申请日:2020-03-25

    Abstract: A system includes a neural network system implemented by one or more computers. The neural network system is configured to receive an observation characterizing a current state of a real-world environment being interacted with by a robotic agent to perform a robotic task and to process the observation to generate a policy output that defines an action to be performed by the robotic agent in response to the observation. The neural network system includes: (i) a sequence of deep neural networks (DNNs), in which the sequence of DNNs includes a simulation-trained DNN that has been trained on interactions of a simulated version of the robotic agent with a simulated version of the real-world environment to perform a simulated version of the robotic task, and (ii) a first robot-trained DNN that is configured to receive the observation and to process the observation to generate the policy output.

Patent Agency Ranking