Abstract:
There is provided a liquid crystal composition containing the compound represented by the general formula (1) and a liquid crystal display device that uses the liquid crystal composition. The compound represented by the general formula (1) has high Δ∈, high Tni, and good miscibility with other liquid crystal compounds. Therefore, a liquid crystal composition that has high Δ∈ and exhibits a liquid crystal phase in a wide temperature range can be obtained by using the compound represented by the general formula (1) as a component of the liquid crystal composition. Thus, the compound is very useful as a constituent component of the liquid crystal composition for liquid crystal display devices.
Abstract:
There is provided a compound having a good miscibility with another liquid crystal compound and having a combination of a low viscosity (η), high storage stability, and high T−i even after being used to produce a liquid crystal composition. In particular, it is a compound having a 2-fluorophenyloxymethane structure is provided. Since the compound having a 2-fluorophenyloxymethane structure is highly miscible with another liquid crystal compound, using the compound having a 2-fluorophenyloxymethane structure as a component of a liquid crystal composition enables a production of a liquid crystal composition which exhibits a liquid crystal phase at low viscosity and in a wide temperature range and which has a high storage stability and enables production of a liquid crystal display device which responds fast and which has excellent display characteristics.
Abstract:
The spontaneous orientation aid for a liquid crystal composition provides storage stability and allows liquid crystal molecules to be vertically aligned without a PI layer when added to a liquid crystal composition. The spontaneous orientation aid for a liquid crystal composition includes a compound having a partial structure represented by formula (i), particularly in which Ki1 is represented by one of formula (K-1) to formula (K-11). When used in a liquid crystal composition, the spontaneous orientation aid can adsorb to substrates sandwiching a liquid crystal composition (liquid crystal layer) and keep the liquid crystal molecules aligned in a vertical direction. The spontaneous orientation aid makes it possible to align liquid crystal molecules without a PI layer (to induce vertical alignment of liquid crystal molecules under no applied voltage and to achieve horizontal alignment of the liquid crystal molecules under an applied voltage).
Abstract:
The compound is represented by general formula (i). In the compound, in a group Ki1, at least two secondary carbon atoms in an alkyl group (a linear alkyl, halogenated alkyl, or cyanogenated alkyl group having 3 to 40 carbon atoms) are replaced with —C(═Xi1)— and/or —CH(—CN)—, where Xi1 is an oxygen atom, a sulfur atom, NH, or NR13; in addition, a group Ai2, a group Ai3, or the group Ki1 includes, as a substituent, at least one Pi1-Spi1- group, where Pi1 is a polymerizable group, and SPi1 is a spacer group or a single bond. The liquid crystal composition including the compound represented by general formula (i) can be adsorbed onto substrates between which a liquid crystal layer is held, and, consequently, without the use of an alignment film, liquid crystal molecules can be maintained in a state in which the liquid crystal molecules are aligned in a vertical direction.
Abstract:
A liquid crystal composition that has a positive dielectric anisotropy and a sufficiently low viscosity and that causes no display defects when used in liquid crystal display devices is provided without decreasing or increasing the refractive index anisotropy or nematic phase-isotropic liquid phase transition temperature. This liquid crystal composition contains at least one compound selected from compounds represented by general formula (LC0) and at least one compound selected from the group consisting of compounds represented by general formulas (LC1) to (LC5). This liquid crystal composition can be used to provide a reliable liquid crystal display device capable of maintaining a high voltage-holding ratio at high temperatures. This liquid crystal display device is highly practical as a liquid crystal display and is effective in achieving quick response without significantly decreasing the cell gap.
Abstract:
The present invention relates to a compound having 2,6-difluorophenyl ether structure and useful as an organic electronic material and a medicine/agrochemical, particularly a material for liquid crystal display devices, and also relates to an effective method for producing the same. The present invention provides a compound represented by general formula (1) and also provides a liquid crystal composition containing the compound and a liquid crystal display device using the liquid crystal composition. A liquid crystal composition exhibiting low viscosity and a liquid crystal phase within a wide temperature range can be produced by using the compound represented by the general formula (1) as a component of the liquid crystal composition. Thus, the compound is very useful as a constituent component of a liquid crystal composition for a liquid crystal display device required to have, fast response.
Abstract:
There is provided a liquid crystal composition containing the compound represented by the general formula (1) and a liquid crystal display device that uses the liquid crystal composition. The compound represented by the general formula (1) has high Δ∈, high Tni, and good miscibility with other liquid crystal compounds. Therefore, a liquid crystal composition that has high Δ∈ and exhibits a liquid crystal phase in a wide temperature range can be obtained by using the compound represented by the general formula (1) as a component of the liquid crystal composition. Thus, the compound is very useful as a constituent component of the liquid crystal composition for liquid crystal display devices.
Abstract:
The present invention provides an improved adhesion when a polymerizable liquid crystal composition is applied to a film substrate and cured, improved storage stability of the composition when the composition is used in a PSA display device, and a liquid crystal display device having improved display characteristics. The polymerizable compound is represented by general formula (I). The invention provides an optically anisotropic film using the polymerizable compound, and a liquid crystal display device using the polymerizable compound.
Abstract:
Provided are a polymerizable composition in which precipitation or the like of crystals does not occur and which has high storage stability; and a polymerizable composition in which unevenness is unlikely to occur when a film-like polymerized material obtained by polymerizing the composition is prepared. Further, provided are an optically anisotropic body, a retardation film, an optical compensation film, an anti-reflective film, a lens, and a lens sheet which are formed of the polymerizable composition, a liquid crystal display element, an organic light-emitting display element, a lighting element, an optical component, a colorant, a security marking, a member for emitting a laser, a polarizing film, a coloring material, and a printed matter for which the polymerizable composition is used.
Abstract:
[Object]To provide a liquid crystal alignment layer that can easily be formed, to which an anchoring force can be efficiently induced with less polarized light for exposure, and that is effective in controlling the orientation and pretilt angle of liquid crystal molecules, and a compound and polymer that can be used for such a liquid crystal alignment layer.[Solution]A compound is represented by general formula (I): where L is a polymerizable group; Sp is a spacer unit containing methylene; Q is a direct bond, —O—, or other group; A contains a group selected from the group consisting of trans-1,4-cyclohexylene and other groups; s is an integer of 1 to 4, where if s is 2 to 4, each A may be the same or different; X and Y are each independently hydrogen or other group; and M is any of general formulas (IIa), (IIb), and (IIc):