Abstract:
An organic electroluminescent device includes a substrate that is conductive at least on a first surface; a first insulating film located on the first surface of the substrate and including a portion of a first opening, a portion of a second opening, and a portion of a third opening; a semiconductor film located on the first insulating film and receiving a current from the first surface of the substrate via the portion of a first opening; a second insulating film located on the semiconductor film and in contact with the substrate via the portion of a second opening; a capacitance electrode located on the second insulating film; a gate electrode located on the second insulating film and overlapping the semiconductor film; an intermediate insulating film located on the gate electrode and capacitance electrode; a pixel electrode located on the intermediate insulating film and receiving a current via the semiconductor film; a light-emitting layer located on the pixel electrode; a common electrode located on the light-emitting layer; and a power supply section located on the first insulating film and supplying a current to the first surface of the substrate via the portion of a third opening. The second insulating film is interposed between the capacitance electrode and the substrate via the portion of a second opening.
Abstract:
A sewing machine includes a bed, a sewing device, a projection portion, an item detection portion, and a control portion. The sewing device includes a needle bar and a feed portion that moves a work cloth. The projection portion projects, onto at least one of the bed and the work cloth, a projected image that includes at least one operation item that indicates an operation of the sewing device. The item detection portion detects whether a user's finger has touched a location, on the at least one of the bed and the work cloth onto which the at least one operation item is being projected by the projection portion, where one of the at least one operation item is being projected. The control portion operates the sewing device in accordance with the operation item that has been detected by the item detection portion.
Abstract:
A sewing machine that includes a processor, a plurality of detection devices that is configured to be capable of changing mounting positions and configured to detect an ultrasonic wave, and a memory that is configured to store computer-readable instructions that instruct the sewing machine to execute steps comprising, identifying, when a first ultrasonic wave transmitted from a transmission source of the ultrasonic wave is detected by the detection devices, a position of the transmission source of the first ultrasonic wave, based on information relating to the detected first ultrasonic wave, and controlling sewing based on the identified position of the transmission source of the first ultrasonic wave.
Abstract:
A sewing machine includes at least one ultrasonic wave detecting portion, a thickness detecting portion, a processor, and a memory. The at least one ultrasonic wave detecting portion is configured to detect an ultrasonic wave. The thickness detecting portion is configured to detect a thickness of a work cloth. The memory configured to store computer-readable instructions that instruct the sewing machine to execute steps that includes identifying a position, on the work cloth, of a transmission source of the ultrasonic wave, based on information pertaining to the ultrasonic wave that has been detected by the at least one ultrasonic wave detecting portion and on the thickness that has been detected by the thickness detecting portion, and controlling sewing on the work cloth based on the position of the transmission source that has been identified.
Abstract:
An apparatus includes a processor and a memory. The memory is configured to store computer-readable instructions therein, wherein the computer-readable instructions instruct the sewing machine to execute steps comprising acquiring image data including one or more characters, extracting, from acquired image data, one or more character designs with respect to each character included in the acquired image data, wherein the character design represents each character included in the acquired image data, generating embroidery data with respect to each character based on the extracted character design, wherein the embroidery data represents an embroidery pattern in a predetermined size.
Abstract:
An electro-optical device provided with a plurality of pixel sections, includes: a first substrate having a plurality of light-emitting elements to configure the plurality of pixel sections; a second substrate having a driving circuit to control light emission of the plurality of light-emitting elements, respectively, and disposed so as to face an element forming surface of the first substrate; and a plurality of conductive connectors provided between the first substrate and the second substrate, and electrically connect the plurality of light-emitting elements, respectively, to the driving circuit. The plurality of conductive connectors are disposed in a staggered manner at least along a first arrangement direction of the plurality of pixel sections.