Abstract:
Disclosed is a detection device for detecting a strength and a direction of an external force applied to a reference point, the detection device including: a first substrate having a plurality of first capacitor electrodes arranged around the reference point; a second substrate arranged to face the first substrate by interposing the first capacitor electrodes; a dielectric body arranged between the first and second substrates and made of an elastic body or fluid; a second capacitor electrode arranged to face the first capacitor electrodes by interposing the dielectric body between the first and second substrates; and a third substrate having an elastic projection which has a gravity center in a location overlapping with the reference point and is elastically deformed by the external force while a tip thereof abuts on the second substrate.
Abstract:
A method for manufacturing a semiconductor device, comprises providing a semiconductor layer deposited on a substrate with heat treatment by using a flame of a gas burner fueled by a hydrogen-and-oxygen mixed gas as a heat source.
Abstract:
The invention provides an organic electroluminescence device having an input function, including: an element substrate that has a light-emitting layer sandwiched between a pair of electrodes; a sealing substrate that seals the element substrate; a first detection electrode that is provided at the inner-surface side of the sealing substrate; a second detection electrode that is provided at the outer-surface side of the sealing substrate; the second detection electrode having a detection axis that is not the same as that of the first detection electrode; a dielectric film that is formed on the second detection electrode; and a detection unit that detects a position at which electrostatic capacitance is generated via the dielectric film between the first detection electrode and the second detection electrode.
Abstract:
A method of manufacturing a semiconductor element includes: (a) preparing a first substrate provided with a plurality of protruding sections formed on a surface of the first substrate and a second substrate provided with a semiconductor film formed on a surface of the second substrate; and (b) executing a heat treatment on the semiconductor film while the plurality of protruding sections and the semiconductor film are in contact with each other.
Abstract:
An input-capable display device includes a first substrate a second substrate, a detection electrode, a dielectric film, and a detector. A pair of electrodes that drive a liquid crystal layer are provided on the first substrate. The second substrate is opposed to the first substrate through the liquid crystal layer. The detection electrode and the dielectric film are laminated on an outer surface of the second substrate. The detector detects a position at which an electrostatic capacitance is formed with the detection electrode through the dielectric film. The second substrate includes a shield conductor that is provided on a side adjacent to the liquid crystal layer. An electric potential of the shield conductor is fixed. The shield conductor has a plurality of birefringent structures that are arranged in a stripe.
Abstract:
To provide a sheet-shaped organic EL display device having a reduced thickness, an organic EL display device includes a substrate serving as both a protective layer to reduce or prevent permeation of moisture, oxygen, and the like into the inside and a support layer for film formation, a laminate which is provided on a under layer by film formation and which includes a thin film circuit layer carrying an electric circuit and an organic EL light emitting layer carrying an organic EL light emitting element, and an adhesive layer joining the above-described laminate and the above-described substrate. The above-described organic EL light emitting element radiates the emitted light toward the above-described under layer side. In this manner, a low-profile organic EL display device can be provided.
Abstract:
A device manufacturing method, including: a first process for providing the plural elements on the original substrate via a separation layer in a condition where terminal sections are exposed to a surface on an opposite side to the separation layer; a second process for adhering the surface where the terminal sections of the elements to be transferred on the original substrate are exposed, via conductive adhesive, to a surface of the final substrate on a side where conductive sections for conducting with the terminal sections of the elements are provided; a third process for producing exfoliation in the separation layer between the original substrate and the final substrate; and a fourth process for separating the original substrate from which the transfer of elements has been completed, from the final substrate.
Abstract:
In a semiconductor device made by forming functional elements on a first substrate, transferring the element chip onto a second substrate, and connecting first pads on the element chip to second pads on the second substrate, the area or the width of the first is increased. The first pads can be securely connected to the second pads even when misalignment occurs during the separating and transferring processes. Only the first pads are formed on a surface of the element chip at the second-substrate-side. The functional elements are formed to be farther from the second substrate than the first pads. Alternatively, only the first pads are formed on a surface of the element chip remote from the second substrate, and the functional elements are formed to be closer to the second substrate than the first pads. Alternatively, the first pads are formed on both the surface of the element chip at the second-substrate-side and the surface of the element chip remote from the second substrate.
Abstract:
A transfer method comprising a step of forming a plurality of transferred bodies on a transfer origin substrate, and a step of applying energy to partial regions corresponding to the transferred bodies to be transferred, and transferring these transferred bodies corresponding to the partial regions onto a transfer destination substrate. A plurality of transferred bodies such as devices or circuits that are to be disposed on a transfer destination substrate with spaces therebetween can be manufactured integrated together on a transfer origin substrate, and hence compared with the case that the transferred bodies are formed on the transfer destination substrate directly, the amount of materials used in the manufacture of the transferred bodies can be reduced, the area efficiency can be greatly improved, and a transfer destination substrate on which a large number of devices or circuits are disposed in scattered locations can be manufactured efficiently and cheaply.
Abstract:
A technique enabling a reduction in manufacturing cost of an electric device (for example, an organic EL display device) using a substrate requiring a barrier layer is described. A manufacturing method of the electric device of may include forming a peeling layer on a first substrate, forming a transferred layer that includes an electric element on the peeling layer, forming the barrier layer on the transferred layer, bonding a second substrate to the transferred layer formation on a surface side of the first substrate via an adhesive layer, transferring energy to the peeling layer through the first substrate to cause peeling in the peeling layer, and separation of the first substrate from the second substrate.