摘要:
An ultrasonic probe encircles the perimeter of a target component to be ultrasonically tested and has a base and a pair of jaws pivotally mounted to the base at opposite ends of an arcuate inner surface of the base to encircle a target component with arcuate inner surfaces of the jaws as well. The inner surfaces form a coupling fluid chamber with an outer surface of the target component. Front and rear sets of seals connected to and extending along front and rear portions of the arcuate inner surfaces seal the chamber so that it can retain a coupling fluid such as water. An arcuate set of ultrasonic transducers is connected along at least one but preferably all of the arcuate inner surfaces for transmitting ultrasonic signals to the coupling fluid chamber and into the target component.
摘要:
An ultrasonic probe encircles the perimeter of a target component to be ultrasonically tested and has a base and a pair of jaws pivotally mounted to the base at opposite ends of an arcuate inner surface of the base to encircle a target component with arcuate inner surfaces of the jaws as well. The inner surfaces form a coupling fluid chamber with an outer surface of the target component. Front and rear sets of seals connected to and extending along front and rear portions of the arcuate inner surfaces seal the chamber so that it can retain a coupling fluid such as water. An arcuate set of ultrasonic transducers is connected along at least one but preferably all of the arcuate inner surfaces for transmitting ultrasonic signals to the coupling fluid chamber and into the target component.
摘要:
A method for ultrasonically inspecting components with wavy or uneven surfaces. A multi-element array ultrasonic transducer is operated with a substantial fluid layer, such as water, between the array transducer and the component surface. This fluid layer may be maintained by immersing the component in liquid or by using a captive couplant column between the probe and the component surface. The component is scanned, measuring the two dimensional surface profile using either a mechanical stylus, laser, or ultrasonic technique. Once an accurate surface profile of the component's surface has been obtained, data processing parameters are calculated for processing the ultrasonic signals reflected from the interior of the component that eliminate beam distortion effects and reflector mis-location that would otherwise occur due to the uneven surfaces.
摘要:
An EMAT testing device for nondestructively testing tubes for surface defects and displaying the results has a EMAT transmitter arranged collinear with a pair of EMAT receivers. The EMAT receivers each receive a pair of oppositely propagating circumferential acoustic surface waves from the transmitter at different times and the relative amplitudes of the received waves are compared to located defects adjacent the receivers in the tube.
摘要:
In an electromagnetic acoustic transducer or EMAT, a spring release mechanism comprises a frame or carriage and, if necessary at least one movement element for permitting movement across a surface of a workpiece. A magnet is movable against the surface past the frame or carriage and a base supports the magnet. The spring is connected between the frame and the base for biasing the base away from the frame to urge the magnet away from the surface.
摘要:
A method for ultrasonically inspecting components with wavy or uneven surfaces. A multi-element array ultrasonic transducer is operated with a substantial fluid layer, such as water, between the array transducer and the component surface. This fluid layer may be maintained by immersing the component in liquid or by using a captive couplant column between the probe and the component surface. The component is scanned, measuring the two dimensional surface profile using either a mechanical stylus, laser, or ultrasonic technique. Once an accurate surface profile of the component's surface has been obtained, data processing parameters are calculated for processing the ultrasonic signals reflected from the interior of the component that eliminate beam distortion effects and reflector mis-location that would otherwise occur due to the uneven surfaces.
摘要:
A method for ultrasonically inspecting components with wavy or uneven surfaces. A multi-element array ultrasonic transducer is operated with a substantial fluid layer, such as water, between the array transducer and the component surface. This fluid layer may be maintained by immersing the component in liquid or by using a captive couplant column between the probe and the component surface. The component is scanned, measuring the two dimensional surface profile using either a mechanical stylus, laser, or ultrasonic technique. Once an accurate surface profile of the component's surface has been obtained, data processing parameters are calculated for processing the ultrasonic signals reflected from the interior of the component that eliminate beam distortion effects and reflector mis-location that would otherwise occur due to the uneven surfaces.
摘要:
A method for ultrasonically inspecting components with wavy or uneven surfaces. A multi-element array ultrasonic transducer is operated with a substantial fluid layer, such as water, between the array transducer and the component surface. This fluid layer may be maintained by immersing the component in liquid or by using a captive couplant column between the probe and the component surface. The component is scanned, measuring the two dimensional surface profile using either a mechanical stylus, laser, or ultrasonic technique. Once an accurate surface profile of the component's surface has been obtained, data processing parameters are calculated for processing the ultrasonic signals reflected from the interior of the component that eliminate beam distortion effects and reflector mis-location that would otherwise occur due to the uneven surfaces.
摘要:
An EMAT device for non-destructive inspection of the surface of a tube for cracks using acoustic surface waves includes a pulsed magnet having an active surface for facing the surface of a tube to be inspected. A receive emat coil is on the active surface and a transmit emat coil is on the opposite surface of the receive coil. The transmit emat coil has a scan surface for scanning over the tube surface. A transmitter for generating and transmitting an RF signal to the transmit emat coil is provided for generating a transmitted acoustic wave signal along the tube, the transmitted wave creating a reflected acoustic wave if a crack in the tube is encountered, the reflected wave generating a reflection signal in the receive emat coil. A receiver is connected to the receive emat coil for receiving the reflection signal. A digital computer is connected to the receiver for receiving and for processing the reflection signal and a display displays information about a crack in the tube which created the reflected acoustic wave and resulting reflection signal.
摘要:
An ultrasonic inspection technique using a specially designed electromagnetic acoustic transducer (EMAT) launches and receives longitudinal ultrasonic waves into a thin metal wall or thin metal foil seal of a container, causing it to vibrate and launch ultrasonic compressional waves into liquid contained therein. The contents of plastic containers having a metal foil seal forming one wall are easily inspected. The EMAT establishes a magnetic field in the surface of the metal parallel to the surface. Radio frequency (RF) eddy currents are also induced by the EMAT in the surface of the metal. A Lorentz force is generated in the metal surface according the vector product of J, the current density, and H, the magnetic field, and the force generated by the interaction of the perpendicular components of the magnetic field H and the eddy currents J is directed normally to the surface of the metal. This normal force oscillates with the frequency of the induced eddy currents creating ultrasonic compressional waves which propagate normal to the surface of the metal. In such thin-walled metal containers or thin metal foil seals, where the thickness of the metal is much shorter than the ultrasonic wavelength in the metal, the generation and reception process is analogous to the operation of a loudspeaker in air. In this application, the thin metal wall or foil acts as a membrane, with the Lorentz forces generated in the wall or foil causing the metal membrane to vibrate, generating ultrasonic waves in the liquid. Because the thin wall or foil is much more compliant than a thick piece of metal, much larger displacements are generated at the metal-liquid interface than for the thick-wall case, resulting in much larger signal amplitudes than in the thick-wall case.