Abstract:
Audio characteristics of audio data corresponding to a plurality of audio channels may be determined. The audio characteristics may include spatial parameter data. Decorrelation filtering processes for the audio data may be based, at least in part, on the audio characteristics. The decorrelation filtering processes may cause a specific inter-decorrelation signal coherence (“IDC”) between channel-specific decorrelation signals for at least one pair of channels. The channel-specific decorrelation signals may be received and/or determined. Inter-channel coherence (“ICC”) between a plurality of audio channel pairs may be controlled. Controlling ICC may involve at receiving an ICC value and/or determining an ICC value based, at least partially, on the spatial parameter data. A set of IDC values may be based, at least partially, on the set of ICC values. A set of channel-specific decorrelation signals, corresponding with the set of IDC values, may be synthesized by performing operations on the filtered audio data.
Abstract:
Methods and systems for designing binaural room impulse responses (BRIRs) for use in headphone virtualizers, and methods and systems for generating a binaural signal in response to a set of channels of a multi-channel audio signal, including by applying a BRIR to each channel of the set, thereby generating filtered signals, and combining the filtered signals to generate the binaural signal, where each BRIR has been designed in accordance with an embodiment of the design method. Other aspects are audio processing units configured to perform any embodiment of the inventive method. In accordance with some embodiments, BRIR design is formulated as a numerical optimization problem based on a simulation model (which generates candidate BRIRs) and at least one objective function (which evaluates each candidate BRIR), and includes identification of a best one of the candidate BRIRs as indicated by performance metrics determined for the candidate BRIRs by each objective function.
Abstract:
In some embodiments, virtualization methods for generating a binaural signal in response to channels of a multi-channel audio signal, which apply a binaural room impulse response (BRIR) to each channel including by using at least one feedback delay network (FDN) to apply a common late reverberation to a downmix of the channels. In some embodiments, input signal channels are processed in a first processing path to apply to each channel a direct response and early reflection portion of a single-channel BRIR for the channel, and the downmix of the channels is processed in a second processing path including at least one FDN which applies the common late reverberation. Typically, the common late reverberation emulates collective macro attributes of late reverberation portions of at least some of the single-channel BRIRs. Other aspects are headphone virtualizers configured to perform any embodiment of the method.
Abstract:
Methods and systems for designing binaural room impulse responses (BRIRs) for use in headphone virtualizers, and methods and systems for generating a binaural signal in response to a set of channels of a multi-channel audio signal, including by applying a BRIR to each channel of the set, thereby generating filtered signals, and combining the filtered signals to generate the binaural signal, where each BRIR has been designed in accordance with an embodiment of the design method. Other aspects are audio processing units configured to perform any embodiment of the inventive method. In accordance with some embodiments, BRIR design is formulated as a numerical optimization problem based on a simulation model (which generates candidate BRIRs) and at least one objective function (which evaluates each candidate BRIR), and includes identification of a best one of the candidate BRIRs as indicated by performance metrics determined for the candidate BRIRs by each objective function.
Abstract:
The present disclosure relates to reverberation generation for headphone virtualization. A method of generating one or more components of a binaural room impulse response (BRIR) for headphone virtualization is described. In the method, directionally-controlled reflections are generated, wherein directionally-controlled reflections impart a desired perceptual cue to an audio input signal corresponding to a sound source location. Then at least the generated reflections are combined to obtain the one or more components of the BRIR. Corresponding system and computer program products are described as well.
Abstract:
Some audio processing methods may involve receiving audio data corresponding to a plurality of audio channels and determining audio characteristics of the audio data, which may include transient information. An amount of decorrelation for the audio data may be based, at least in part, on the audio characteristics. If a definite transient event is determined, a decorrelation process may be temporarily halted or slowed. Determining transient information may involve evaluating the likelihood and/or the severity of a transient event. In some implementations, determining transient information may involve evaluating a temporal power variation in the audio data. Explicit transient information may or may not be received with the audio data, depending on the implementation. Explicit transient information may include a transient control value corresponding to a definite transient event, a definite non-transient event or an intermediate transient control value.
Abstract:
A method for determining mantissa bit allocation of audio data values of frequency domain audio data to be encoded. The allocation method includes a step of determining masking values for the audio data values, including by performing adaptive low frequency compensation on the audio data of each frequency band of a set of low frequency bands of the audio data. The adaptive low frequency compensation includes steps of: performing tonality detection on the audio data to generate compensation control data indicative of whether each frequency band in the set of low frequency bands has prominent tonal content; and performing low frequency compensation on the audio data in each frequency band in the set of low frequency bands having prominent tonal content as indicated by the compensation control data, but not performing low frequency compensation on the audio data in any other frequency band in the set of low frequency bands.
Abstract:
The present disclosure relates to reverberation generation for headphone virtualization. A method of generating one or more components of a binaural room impulse response (BRIR) for headphone virtualization is described. In the method, directionally-controlled reflections are generated, wherein directionally-controlled reflections impart a desired perceptual cue to an audio input signal corresponding to a sound source location. Then at least the generated reflections are combined to obtain the one or more components of the BRIR. Corresponding system and computer program products are described as well.
Abstract:
In some embodiments, virtualization methods for generating a binaural signal in response to channels of a multi-channel audio signal, which apply a binaural room impulse response (BRIR) to each channel including by using at least one feedback delay network (FDN) to apply a common late reverberation to a downmix of the channels. In some embodiments, input signal channels are processed in a first processing path to apply to each channel a direct response and early reflection portion of a single-channel BRIR for the channel, and the downmix of the channels is processed in a second processing path including at least one FDN which applies the common late reverberation. Typically, the common late reverberation emulates collective macro attributes of late reverberation portions of at least some of the single-channel BRIRs. Other aspects are headphone virtualizers configured to perform any embodiment of the method.
Abstract:
Methods and systems for designing binaural room impulse responses (BRIRs) for use in headphone virtualizers, and methods and systems for generating a binaural signal in response to a set of channels of a multi-channel audio signal, including by applying a BRIR to each channel of the set, thereby generating filtered signals, and combining the filtered signals to generate the binaural signal, where each BRIR has been designed in accordance with an embodiment of the design method. Other aspects are audio processing units configured to perform any embodiment of the inventive method. In accordance with some embodiments, BRIR design is formulated as a numerical optimization problem based on a simulation model (which generates candidate BRIRs) and at least one objective function (which evaluates each candidate BRIR), and includes identification of a best one of the candidate BRIRs as indicated by performance metrics determined for the candidate BRIRs by each objective function.