Abstract:
The present disclosure relates to reverberation generation for headphone virtualization. A method of generating one or more components of a binaural room impulse response (BRIR) for headphone virtualization is described. In the method, directionally-controlled reflections are generated, wherein directionally-controlled reflections impart a desired perceptual cue to an audio input signal corresponding to a sound source location. Then at least the generated reflections are combined to obtain the one or more components of the BRIR. Corresponding system and computer program products are described as well.
Abstract:
According to an aspect of the present invention, a method for reconstructing an audio signal having a baseband portion and a highband portion is disclosed. The method includes obtaining a decoded baseband audio signal by decoding an encoded audio signal and obtaining a plurality of subband signals by filtering the decoded baseband audio signal. The method further includes generating a high-frequency reconstructed signal by copying a number of consecutive subband signals of the plurality of subband signals and obtaining an envelope adjusted high-frequency signal. The method further includes generating a noise component based on a noise parameter. Finally, the method includes adjusting a phase of the high-frequency reconstructed signal and obtaining a time-domain reconstructed audio signal by combining the decoded baseband audio signal and the combined high-frequency signal to obtain a time-domain reconstructed audio signal.
Abstract:
An audio communication endpoint receives a bitstream containing spectral components representing spectral content of an audio signal, wherein the spectral components relate to a first range extending up to a first break frequency, above which any spectral components are unassigned. The endpoint adapts the received bitstream in accordance with a second range extending up to a second break frequency by removing spectral components or adding neutral-valued spectral components relating to a range between the first and second break frequencies. The endpoint then attenuates spectral content in a neighborhood of the least of the first and second break frequencies for thereby achieving a gradual spectral decay. After this, reconstructing the audio signal is reconstructed by an inverse transform operating on spectral components relating to said second range in the adapted and attenuated received bitstream. At small computational expense, the endpoint may to adapt to different sample rates in received bitstreams.
Abstract:
An audio processing system, such as an upmixer, may be capable of separating diffuse and non-diffuse portions of N input audio signals. The upmixer may be capable of detecting instances of transient audio signal conditions. During instances of transient audio signal conditions, the up-mixer may be capable of adding a signal-adaptive control to a diffuse signal expansion process in which M audio signals are output. The upmixer may vary the diffuse signal expansion process over time such that during instances of transient audio signal conditions the diffuse portions of audio signals may be distributed substantially only to output channels spatially close to the input channels. During instances of non-transient audio signal conditions, the diffuse portions of audio signals may be distributed in a substantially uniform manner.
Abstract:
A method for generating a reconstructed audio signal having a baseband portion and a highband portion is disclosed. The method includes extracting temporal envelope information and spectral components of the baseband portion. The method further includes obtaining a decoded baseband audio signal. The obtaining includes filtering in a frequency domain at least some of the spectral components of the baseband portion with the reconstruction filter using the temporal envelope information to shape a temporal envelope of the baseband portion. The method also includes extracting a noise parameter and an estimated spectral envelope of the highband portion and obtaining a plurality of subband signals by filtering the decoded baseband audio signal. The method further includes generating a high-frequency reconstructed signal by copying a number of consecutive subband signals of the plurality of subband signals and obtaining an envelope adjusted high-frequency signal by adjusting, based on the estimated spectral envelope of the highband portion, a spectral envelope of the high-frequency reconstructed signal.
Abstract:
A method for generating a reconstructed audio signal having a baseband portion and a highband portion is disclosed. The method includes deformatting an encoded audio signal into a first part and a second part and extracting, from the first part, temporal envelope information and spectral components of the baseband portion. The method further includes decoding the first part to obtain a decoded baseband audio signal. The decoding includes filtering in a frequency domain at least some of the spectral components of the baseband portion with the reconstruction filter using the temporal envelope information to shape a temporal envelope of the baseband portion. The method also includes extracting, from the second part, a noise parameter and an estimated spectral envelope of the highband portion and obtaining a plurality of subband signals by filtering the decoded baseband audio signal. The method further includes generating a high-frequency reconstructed signal by copying a number of consecutive subband signals of the plurality of subband signals and obtaining an envelope adjusted high-frequency signal by adjusting, based on the estimated spectral envelope of the highband portion, a spectral envelope of the high-frequency reconstructed signal.
Abstract:
According to an aspect of the present invention, a method for reconstructing an audio signal having a baseband portion and a highband portion is disclosed. The method includes obtaining a decoded baseband audio signal by decoding an encoded audio signal and obtaining a plurality of subband signals by filtering the decoded baseband audio signal. The method further includes generating a high-frequency reconstructed signal by copying in a circular manner a number of consecutive subband signals of the plurality of subband signals and obtaining an envelope adjusted high-frequency signal by adjusting, based on an estimated spectral envelope of the highband portion, a spectral envelope of the high-frequency reconstructed signal. The method further includes generating a noise component based on a noise parameter and obtaining a combined high-frequency signal by adding the noise component to the envelope adjusted high-frequency signal. Finally, the method includes obtaining a time-domain reconstructed audio signal by combining the decoded baseband audio signal and the combined high-frequency signal to obtain a time-domain reconstructed audio signal. The method may be implemented by an audio decoding device comprising one or more hardware elements.
Abstract:
A method for generating a reconstructed audio signal having a baseband portion and a highband portion is disclosed. The method includes deformatting an encoded audio signal into a first part and a second part and decoding the first part to obtain a decoded baseband audio signal. The method also includes extracting an estimated spectral envelope of the highband portion and a noise parameter from the second part and filtering the decoded baseband audio signal to obtain a plurality of subband signals. The method further includes generating a high-frequency reconstructed signal by copying a number of consecutive subband signals of the plurality of subband signals and adjusting a spectral envelope of the high-frequency reconstructed signal based on the estimated spectral envelope of the highband portion to obtain an envelope adjusted high-frequency signal.
Abstract:
A method including steps of decoding an encoded audio signal indicative of encoded audio content (e.g., audio content captured during a teleconference) to generate a decoded signal indicative of a decoded version of the audio content, and performing adaptive quantization noise filtering on the decoded signal. The filtering is performed adaptively in the frequency domain in response to data indicative of signal to noise values in turn indicative of a post-quantization signal-to-quantization noise ratio for each frequency band of each of at least one segment of the encoded audio content. In some embodiments, each signal to noise value is a bit allocation value equal to the number of mantissa bits of an encoded audio sample of a frequency band of a segment of the encoded audio content. Other aspects are decoder, or post-filter coupled to receive a decoder's output, configured to perform an embodiment of the adaptive filtering.
Abstract:
A neural network system for predicting frequency coefficients of a media signal, the neural network system comprising a time predicting portion including at least one neural network trained to predict a first set of output variables representing a specific frequency band of a current time frame given coefficients of one or several previous time frames, and a frequency predicting portion including a at least one neural network trained to predict a second set of output variables representing a specific frequency band given coefficients of one or several frequency bands adjacent to the specific frequency band in said current time frame. Such a neural network system forms a predictor capable of capturing both temporal and frequency dependencies occurring in time-frequency tiles of a media signal.