Abstract:
A display system includes a housing member which has space therein, a plurality of light source units which are placed in the space, a diffusion member which is disposed on the light source units, a liquid crystal display panel which is disposed on the diffusion member, an infrared camera unit which is interposed between the liquid crystal display panel and the diffusion member and photograph a front region of the liquid crystal display panel, and a plurality of infrared light sources which emit infrared light to the front region of the liquid crystal display panel.
Abstract:
A back cover for a backlight assembly capable of achieving a more compact a display apparatus includes a cover element, a line portion, and a plurality of point light sources. The cover element includes a metallic layer, and the cross-section of the cover element has an L-shape. The line portion is formed over the cover element. The point light sources are mounted on the surface of the cover element to receive a driving voltage from the line portion. A bottom cover portion of the cover element covers an opening portion. A side cover portion of the cover element faces the side wall. The point light sources mounted on the cover element emit light on a side surface of a light guide plate.
Abstract:
A back cover for a backlight assembly capable of achieving a more compact a display apparatus includes a cover element, a line portion, and a plurality of point light sources. The cover element includes a metallic layer, and the cross-section of the cover element has an L -shape.The line portion is formed over the cover element. The point light sources are mounted on the surface of the cover element to receive a driving voltage from the line portion. A bottom cover portion of the cover element covers an opening portion. A side cover portion of the cover element faces the side wall. The point light sources mounted on the cover element emit light on a side surface of a light guide plate.
Abstract:
A back cover for a backlight assembly capable of achieving a more compact a display apparatus includes a cover element, a line portion, and a plurality of point light sources. The cover element includes a metallic layer, and the cross-section of the cover element has an L-shape. The line portion is formed over the cover element. The point light sources are mounted on the surface of the cover element to receive a driving voltage from the line portion. A bottom cover portion of the cover element covers an opening portion. A side cover portion of the cover element faces the side wall. The point light sources mounted on the cover element emit light on a side surface of a light guide plate.
Abstract:
A display device includes an image signal processing unit to output a high-speed image signal with the aid of an image interpolation unit outputting a low-speed image signal. The display device includes an image signal processing unit to receive a primitive image signal having a first frequency and to output a 4× image signal having a second frequency. The second frequency is four times the first frequency. The display device includes a display panel displaying an image corresponding to the 4× image signal. The primitive image signal includes an (n−1)-th frame (where n is a natural number) and an n-th frame. The image signal processing unit includes a first image interpolation unit and second image interpolation unit, which receive the (n−1)-th frame and the n-th frame and output a 2× image signal including at least one interpolated frame.
Abstract:
A display device includes an image signal processing unit to output a high-speed image signal with the aid of an image interpolation unit outputting a low-speed image signal. The display device includes an image signal processing unit to receive a primitive image signal having a first frequency and to output a 4× image signal having a second frequency. The second frequency is four times the first frequency. The display device includes a display panel displaying an image corresponding to the 4× image signal. The primitive image signal includes an (n−1)-th frame (where n is a natural number) and an n-th frame. The image signal processing unit includes a first image interpolation unit and second image interpolation unit, which receive the (n−1)-th frame and the n-th frame and output a 2× image signal including at least one interpolated frame.
Abstract:
An organic light emitting diode (OLED) display with improved display unit sealing performance is provided. The OLED display includes a substrate, a display unit formed over the substrate and including a plurality of pixels, a conductive contact layer disposed at a distance from the display unit around the display unit, and a sealing member facing the display unit and being fixed to the substrate by the conductive contact layer. The sealing member includes a plurality of metal layers laminated with an insulating adhesive layer formed therebetween, and the plurality of metal layers is electrically connected to the display unit through the conductive contact layer.
Abstract:
A display system includes a housing member which has space therein, a plurality of light source units which are placed in the space, a diffusion member which is disposed on the light source units, a liquid crystal display panel which is disposed on the diffusion member, an infrared camera unit which is interposed between the liquid crystal display panel and the diffusion member and photograph a front region of the liquid crystal display panel, and a plurality of infrared light sources which emit infrared light to the front region of the liquid crystal display panel.
Abstract:
Embodiments may include an OLED display including a substrate, a display unit over the substrate and including a plurality of pixels, a conductive contact layer outside the display unit at a distance from the display unit, and a sealing member facing the display unit and fixed to the substrate by the conductive contact layer. The sealing member may include a plurality of metal layers laminated with an insulating adhesive layer, the insulating adhesive layer being between the metal layers, and a supporting layer neighboring the metal layers with the insulating adhesive layer being between the supporting layer and the metal layers. The plurality of metal layers may be electrically connected to the display unit through the conductive contact layer.
Abstract:
A back cover for a backlight assembly capable of achieving a more compact a display apparatus includes a cover element, a line portion, and a plurality of point light sources. The cover element includes a metallic layer, and the cross-section of the cover element has an L-shape. The line portion is formed over the cover element. The point light sources are mounted on the surface of the cover element to receive a driving voltage from the line portion. A bottom cover portion of the cover element covers an opening portion. A side cover portion of the cover element faces the side wall. The point light sources mounted on the cover element emit light on a side surface of a light guide plate.