Abstract:
A method for encoding an input signal using N flow blocks (N is a natural number greater than or equal to 2) and (N−1) split block(s), which is performed by a processor, may comprise: transmitting, by a k-th flow block (k is a natural number greater than or equal to 1 and less than or equal to N−1) among the N flow blocks, a k-th transformation signal obtained by transforming a received signal into a latent representation to a k-th split block among the (N−1) split block(s); splitting, by the k-th split block, the k-th transformation signal by a predetermined ratio, into a first split signal and a second split signal; transmitting, by the k-th split block, the first split signal to a (k+1)-th flow block; and quantizing a signal transformed by an N-th flow block and the second split signals using a quantization block.
Abstract:
Disclosed are a multi-channel audio signal processing method and a multi-channel audio signal processing apparatus. The multi-channel audio signal processing method may generate N channel output signals from N/2 channel downmix signals based on an N−N/2−N structure.
Abstract:
Provided are an encoding method of a multichannel signal, an encoding apparatus to perform the encoding method, a multichannel signal processing method, and a decoding apparatus to perform the decoding method. The decoding method may include identifying an N/2-channel downmix signal derived from an N-channel input signal; and generating an N-channel output signal from the identified N/2-channel downmix signal using a plurality of one-to-two (OTT) boxes. If a low frequency effect (LFE) channel is absent in the output signal, the number of OTT boxes may be equal to N/2 where N/2 denotes the number of channels of the downmix signal.
Abstract:
An encoder and an encoding method for a multi-channel signal, and a decoder and a decoding method for a multi-channel signal are disclosed. A multi-channel signal may be efficiently processed by consecutive downmixing or upmixing.
Abstract:
Disclosed is a unified speech and audio coding (USAC) audio signal encoding/decoding apparatus and method for digital radio services. An audio signal encoding method may include receiving an audio signal, determining a coding method for the received audio signal, encoding the audio signal based on the determined coding method, and configuring, as an audio superframe of a fixed size, an audio stream generated as a result of encoding the audio signal, wherein the coding method may include a first coding method associated with extended high-efficiency advanced audio coding (xHE-AAC) and a second coding method associated with existing advanced audio coding (AAC).
Abstract:
Methods and apparatuses for hiding and extracting data based on a pilot code sequence are provided. A data hiding method may include converting an input audio signal to a frequency domain, distorting phase information of the audio signal converted to the frequency domain based on a pilot code sequence representing data to be hidden, and converting the audio signal with the distorted phase information to a time domain and transmitting the audio signal converted to the time domain. The pilot code sequence may be a set of phase values corresponding to a bit value “0” or “1” of data.
Abstract:
An audio encoding apparatus and method that encodes hybrid contents including an object sound, a background sound, and metadata, and an audio decoding apparatus and method that decodes the encoded hybrid contents are provided. The audio encoding apparatus may include a mixing unit to generate an intermediate channel signal by mixing a background sound and an object sound, a matrix information encoding unit to encode matrix information used for the mixing, an audio encoding unit to encode the intermediate channel signal, and a metadata encoding unit to encode metadata including control information of the object sound.
Abstract:
A method, executed by a processor for compressing an audio signal in multiple layers, may comprise: (a) restoring, in a highest layer, an input audio signal as a first signal; (b) restoring, in at least one intermediate layer, a signal obtained by subtracting an upsampled signal, which is obtained by upsampling the audio signal restored in the highest layer or an immediately previous intermediate layer, from the input audio signal as a second signal; and (c) restoring, in a lowest layer, a signal obtained by subtracting an upsampled signal, which is obtained by upsampling the audio signal restored in an intermediate layer immediately before the lowest layer, from the input audio signal as a third signal, wherein the first signal, the second signal, and the third signal are combined to output a final restoration audio signal.
Abstract:
Disclosed is a binaural rendering method and apparatus for decoding a multichannel audio signal. The binaural rendering method may include: extracting an early reflection component and a late reverberation component from a binaural filter; generating a stereo audio signal by performing binaural rendering of a multichannel audio signal base on the early reflection component; and applying the late reverberation component to the generated stereo audio signal.
Abstract:
Disclosed is a binaural rendering method and apparatus for decoding a multichannel audio signal. The binaural rendering method may include: extracting an early reflection component and a late reverberation component from a binaural filter; generating a stereo audio signal by performing binaural rendering of a multichannel audio signal base on the early reflection component; and applying the late reverberation component to the generated stereo audio signal.