Abstract:
A compressor includes first and second scroll members and a bearing housing. The first scroll member includes a first end plate and a first scroll wrap. The second scroll member includes a second end plate that has a first surface, a second surface, and an oil passage. The first surface has a second scroll wrap meshingly engaging the first scroll wrap. The second surface includes an oil slot. The oil passage is in fluid communication with the oil slot. The bearing housing cooperates with the second scroll member to define an interior volume. The second scroll member is movable between a first position in which lubricant in the interior volume is allowed to flow into the oil passage via the oil slot, and a second position in which working fluid in the chamber is allowed to flow into the oil passage via the oil slot.
Abstract:
A system and method for a compressor includes a compressor connected to a condenser, a discharge line temperature sensor that outputs a discharge line temperature signal corresponding to a discharge line temperature of refrigerant leaving the compressor, and a control module connected to the discharge line temperature sensor. The control module determines a saturated condenser temperature, calculates a discharge superheat temperature based on the saturated condenser temperature and the discharge line temperature, and monitors a flood back condition of the compressor by comparing the discharge superheat temperature with a predetermined threshold. The control module increases a speed of the compressor when the discharge superheat temperature is less than or equal to the predetermined threshold.
Abstract:
A compressor may include a shell. A compression mechanism may be disposed within the shell. A drive shaft may be disposed within the shell and drivingly engaged with the compression mechanism. A motor assembly may be drivingly engaged with the drive shaft and may include a rotor and a stator. A plurality of magnets may be disposed within the rotor and may cooperate with the stator to create an electromagnetic field between the rotor and the stator. A counterweight assembly may be secured to the drive shaft and configured to dynamically balance the compression mechanism and secure the plurality of magnets within the rotor.
Abstract:
Scroll compressor designs are provided to minimize vibration, sound, and noise transmission. The scroll compressor has a bearing housing, and orbiting and non-orbiting scroll members. The non-orbiting scroll member has a radially extending flanged portion with at least one aperture substantially aligned with the axially extending bore. At least one fastener is disposed within the aperture and the bore. A sound isolation member contacts at least one of the non-orbiting scroll member, the fastener, or the bearing housing, to reduce or eliminate noise transmission. The sound isolation member may be formed of a polymeric composite having an acoustic impedance value greater than the surrounding materials. The sound isolation member may be an annular washer, an O-ring, or a biasing member, by way of non-limiting example. In other variations, fluid passages are provided within the fastener and/or bearing housing to facilitate entry of lubricant oil to further dampen sound and noise.
Abstract:
A system and method for calculating parameters for a refrigeration system having a variable speed compressor is provided. A compressor is connected to a condenser and an evaporator. An evaporator sensor outputs an evaporator signal corresponding to at least one of an evaporator pressure and an evaporator temperature. An inverter drive modulates electric power delivered to the compressor to modulate a speed of the compressor. A control module is connected to the inverter drive that receives the evaporator signal. The control module monitors electrical power data and compressor speed data from the inverter drive and calculates at least one of a condenser temperature and a condenser pressure based on the evaporator signal, the electrical power data, and the compressor speed data.