Abstract:
An induction generator for a radio switch having a magnet element as well as an induction coil with a coil core wherein the coil core is U-shaped, wherein a first rest position and a second rest position are in each case defined for the magnet element, in contact with the limbs of the coil core, and a flux direction reversal takes place in the coil core, whenever a change takes place between these positions, wherein a movement path for the magnet element is predetermined for a movement between the rest positions, wherein the induction generator has a first mechanical energy storage device which is operatively connected to the magnet element and first of all stores energy in the course of forcing a movement from a rest position and, after reaching an intermediate position, which is defined along the movement path and corresponding to which the magnetic forces on the coil core suddenly decrease, emits this energy to the magnet element in order to mechanically accelerate the movement of the magnet element to the respective other rest position after leaving the intermediate position.
Abstract:
An induction generator for a radio switch having a magnet element as well as an induction coil with a coil core, characterized in that the coil core is U-shaped, wherein a first contact position and a second contact position for the magnet element are defined on the limbs of the coil core, with a flux direction reversal taking place in each case in the coil core when a change takes place between said positions, wherein the magnet element is arranged such that it can move in a defined manner linearly between the contact positions on the induction generator in a direction in which the limbs are adjacent to one another.
Abstract:
A switching module for a switch includes a housing configured to execute a switching movement when the switch is actuated. The switching module also includes an actuator, which is disposed in the housing and is configured to execute an actuation movement that can be controlled by a control contour. Moreover, the switching module includes an energy converter, which is disposed in the housing and is configured to provide an electrical pulse when powered by the actuation movement of the actuator. Furthermore, the switching module includes a switch unit for emitting a switching signal based on the electrical pulse, for indicating the switching movement of the housing.
Abstract:
An induction generator for a radio switch having a magnet element as well as an induction coil with a coil core wherein the coil core is U-shaped, wherein a first rest position and a second rest position are in each case defined for the magnet element, in contact with the limbs of the coil core, and a flux direction reversal takes place in the coil core, whenever a change takes place between these positions, wherein a movement path for the magnet element is predetermined for a movement between the rest positions, wherein the induction generator has a first mechanical energy storage device which is operatively connected to the magnet element and first of all stores energy in the course of forcing a movement from a rest position and, after reaching an intermediate position, which is defined along the movement path and corresponding to which the magnetic forces on the coil core suddenly decrease, emits this energy to the magnet element in order to mechanically accelerate the movement of the magnet element to the respective other rest position after leaving the intermediate position.
Abstract:
A switching module for a switch includes a housing configured to execute a switching movement when the switch is actuated. The switching module also includes an actuator, which is disposed in the housing and is configured to execute an actuation movement that can be controlled by a control contour. Moreover, the switching module includes an energy converter, which is disposed in the housing and is configured to provide an electrical pulse when powered by the actuation movement of the actuator. Furthermore, the switching module includes a switch unit for emitting a switching signal based on the electrical pulse, for indicating the switching movement of the housing.
Abstract:
An induction generator, for a wireless switch, having a magnetic element with north pole and south pole contact sections, and a coil core having pole contact sections, which can contact with the north pole contact section and the south pole contact section. The magnetic element and the coil core are disposed so as to be movable relative to one another so that a reversal of the magnetic flux direction in the coil core can be generated when switching between first and second idle position, which define a direction of relative movement, in which the north pole and the south pole contact sections each contacts the respective associated pole contact sections. The induction generator has a magnetizable sliding contact section for sliding guidance of the relative movement between the coil core and magnetic element, and this sliding contact section extends parallel to the direction of movement.
Abstract:
An induction generator (100) for a remote switch which comprises a U-shaped magnetic diverter (102) with first and second limbs as well as a coil core (104) with an induction coil (106) arranged between the limbs. A movable magnetic element (110) is provided for switching the induction generator (100). When the magnetic element (110) is in its first position, the magnetic element (110) is connected with the first limb and the coil core (104) and, when the magnetic element (110) is in its second position, the magnetic element (110) is connected with the coil core (104) and the second limb.