摘要:
In a method and x-ray device to adapt the width and the position of a central value of a greyscale windowing for imaging with the x-ray device based on CT values determined with said x-ray device, the adaptation takes place within the scope of a determination and adjustment of an acquisition tube voltage of an x-ray tube of the x-ray device for an examination of a defined tissue of a patient, assuming a reference tube voltage for the examination of the defined tissue of the patient, and in which a width and position of a central value of the greyscale windowing that are associated with the reference tube voltage are automatically adapted to the acquisition tube voltage.
摘要:
A method for distinguishing between gray matter and white matter starting from a time-dependent computed tomography image data record from a perfusion CT examination is disclosed. In at least one embodiment, a plurality of time-independent images are calculated from the time-dependent image data record, a plurality of threshold histogram analyses are performed in order to determine regions of the brain which can be assigned to one or more types of cerebral matter, and subsequently the region of gray matter is determined from the information obtained in respect of type and region of the cerebral matter using at least one logical combination and at least one exclusion method. A control and computational unit is also disclosed with a storage medium in which a computer program or program module is stored, which executes the described method during operation.
摘要:
A method is for calibration of perfusion parameter images. The image data from tomographic imaging measurements are analyzed using a perfusion model, and perfusion parameter values obtained from the analysis are calibrated with a calibration factor to a physiological normal value. To perform the calibration, an image area which contains several different tissue compositions, and in which approximately normal perfusion conditions can be assumed, is selected from the obtained perfusion parameter image. A frequency analysis of the perfusion parameter values contained in this image area is then performed, and at least one frequency interval is selected which corresponds at least approximately to a frequency interval of the occurrence of perfusion parameter values of a known tissue composition. A mean value is calculated from the perfusion parameter values in the frequency interval, and a comparison with the physiological normal value for this tissue composition is made in order to determine the calibration factor or a calibration value included in the calibration factor. The method permits automatic or substantially automatic calibration of perfusion parameter images.
摘要:
A method is for calibration of perfusion parameter images. The image data from tomographic imaging measurements are analyzed using a perfusion model, and perfusion parameter values obtained from the analysis are calibrated with a calibration factor to a physiological normal value. To perform the calibration, an image area which contains several different tissue compositions, and in which approximately normal perfusion conditions can be assumed, is selected from the obtained perfusion parameter image. A frequency analysis of the perfusion parameter values contained in this image area is then performed, and at least one frequency interval is selected which corresponds at least approximately to a frequency interval of the occurrence of perfusion parameter values of a known tissue composition. A mean value is calculated from the perfusion parameter values in the frequency interval, and a comparison with the physiological normal value for this tissue composition is made in order to determine the calibration factor or a calibration value included in the calibration factor. The method permits automatic or substantially automatic calibration of perfusion parameter images.
摘要:
In a method for examining a living subject with an imaging method making use of the concentration of a contrast agent having a physical property that is identifiable with the imaging method in a region of interest (ROI) of the subject presented in time-successive images acquired with the imaging method representing quantitative values of the physical property, a histogram of the quantitative values of the physical property in the ROI is produced for each of the individual images, and the contrast agent concentration in the ROI is determined on the basis of the frequency of occurrence of the quantitative values of the physical property in the ROI.