Abstract:
An imaging lens is constituted of five lenses, including, in order from the object side to the image side: a first lens having a positive refractive power, which is of a meniscus shape having a convex surface toward the object side; a second lens having a negative refractive power and a concave surface toward the image side; a third lens having a positive refractive power, which is of a meniscus shape having a convex surface toward the object side; a fourth lens having a negative refractive power; and a fifth lens having a negative refractive power and at least one inflection point on the surface thereof toward the image side. Predetermined conditional formulae are satisfied.
Abstract:
An imaging lens substantially consists of, in order from an object side, five lenses of a first lens that has a positive refractive power and has a meniscus shape which is convex toward the object side, a second lens that has a negative refractive power and has a meniscus shape which is concave toward an image side, a third lens that has a meniscus shape which is convex toward the image side, a fourth lens that has a positive refractive power, and a fifth lens that has a negative refractive power and has at least one inflection point on an image side surface. Further, the imaging lens satisfies predetermined conditional expressions.
Abstract:
An imaging lens is constituted essentially by six lenses, including: a first lens of a biconvex shape; a second lens having a negative refractive power; a third lens having a positive refractive power and is of a meniscus shape with a convex surface toward the object side; a fourth lens having a positive refractive power; a fifth lens having a negative refractive power; and a sixth lens having a negative refractive power and a concave surface toward the image side, provided in this order from the object side. The imaging lens satisfies a predetermined conditional formula.
Abstract:
An imaging lens is substantially constituted by six lenses, including: a negative first lens having a concave surface toward the object side; a positive second lens; a negative third lens; a positive fourth lens of a meniscus shape with a concave surface toward the object side; a fifth lens; and a sixth lens having a concave surface toward the image side, the surface toward the image side thereof being an aspherical shape having at least one inflection point thereon, provided in this order from the object side. The imaging lens satisfies a predetermined conditional formula.
Abstract:
An imaging lens substantially consists of, in order from an object side, five lenses of a first lens that has a positive refractive power and has a meniscus shape which is convex toward the object side, a second lens that has a negative refractive power and has a meniscus shape which is concave toward the object side, a third lens that has a meniscus shape which is convex toward the image side, a fourth lens that has a positive refractive power and is convex toward the object side, and a fifth lens that has a negative refractive power and has at least one inflection point on an image side surface.
Abstract:
Arranging a negative first lens, a positive second lens, a negative third lens, a positive fourth lens, and a positive fifth lens from the object side, in which the image side surface of the fifth lens has an aspherical shape with one or more inflection points and a concave shape toward the image side in a paraxial region, and, when the overall optical length, focal length of the entire lens system, focal length of the first lens, distance between image side surface of the second lens and object side surface of the third lens, refractive index of the second lens, and refractive index of the third lens are taken as TL, f, f1, Dg2-3, N2, and N3 respectively, the image capturing lens is configured to simultaneously satisfy conditional expressions (1a): 1.0≦TL/f≦1.8, (2a): 0.09
Abstract:
An image capturing lens which substantially consists of five lenses, composed of a first lens having a positive refractive power with the object side surface being formed in a convex shape toward the object side, a second lens having a negative refractive power, a third lens having a positive refractive power, a fourth lens having a negative refractive power with the object side surface being formed in a concave shape toward the object side, and a fifth lens having a negative refractive power with a region in which the negative refractive power is gradually reduced outwardly in a radial direction from the optical axis, arranged in this order from the object side, and satisfies predetermined conditional expressions.
Abstract:
An imaging lens consists of five lenses, including: a fist lens having a biconvex shape with the surface having the radius of curvature with the smaller absolute value toward the object side, a second lens having a negative refractive power and a concave surface toward the image side, a third lens having a meniscus shape with a convex surface toward the object side, a fourth lens having a negative refractive power and a meniscus shape with a convex surface toward the image side, and a fifth lens having a negative refractive power and a meniscus shape with a concave surface toward the image side, the image-side surface thereof having at least one inflection point, disposed in this order from the object side.
Abstract:
Arranging a negative first lens, a positive second lens, a negative third lens, a positive fourth lens, and a negative fifth lens from the object side, in which the image side surface of the fifth lens has an aspherical shape with one or more inflection points and a concave shape toward the image side in a paraxial region, and, when the focal length of the entire lens system, radius of curvature of the image side surface of the first lens, radius of curvature of the image side surface of the second lens, overall optical length, focal length of jth lens, and Abbe number of jth lens are taken as f, R2, R4, TL, fj, and νj respectively, the image capturing lens is configured to simultaneously satisfy conditional expressions (1a): −1.5