Abstract:
A robot simulation device includes an image display unit configured to display a three-dimensional model of a robot system having a robot, a workpiece, and a peripheral device, as a pseudo three-dimensional object existing in a three-dimensional space, and a simulation execution unit configured to perform simulation operation for the three-dimensional model of the robot system displayed by the image display unit.
Abstract:
A simulation device for simulating the operations of a robot that follows a workpiece when the workpiece is conveyed by a conveyer that conveys workpieces along an arc-shaped track. The simulation device includes a robot model arranging section that arranges a robot model in virtual space; a conveyer model arranging section that arranges a conveyer model in the virtual space, the conveyer model being capable of conveying a workpiece model along an arc-shaped virtual track; a workpiece model arranging section that arranges a workpiece model on the conveyer model in the virtual space; a detection device model arranging section that arranges a detection device model in the virtual space capable of detecting the workpiece model; an operation range setting section that sets a following operation range of the robot model in the virtual space; and a simulation execution section that executes simulations.
Abstract:
A simulation apparatus includes: a robot model arranging unit that arranges a robot model on a virtual space; a configuration information storage unit that stores configuration information of a robot system; a transport device arrangement position calculating unit that calculates a transport device arrangement position based on a follow-up operation reference coordinate system related to a follow-up operation of a robot, included in the configuration information; and a detection unit arrangement position calculating unit that calculates a detection unit arrangement position based on the follow-up operation reference coordinate system.
Abstract:
A robot simulation system includes a first plane calculation part which calculates a group of first planes extending through focal points of two camera models and divide the fields of vision of the two camera models at equal intervals when capturing a measurement region, a second plane calculation part which calculates a group of second planes which intersect the first planes and extend along boundaries of light-dark contrast formed on the measurement region with stripe shaped patterns of light from the projector model, an intersecting line calculation part which calculates a plurality of intersecting lines between the first planes and the second planes, a three-dimensional information calculation part which calculates positions of intersecting points between the intersecting lines and surfaces of the workpiece models as three-dimensional information, and a position and posture calculation part which calculates positions and postures of the workpiece model based on the three-dimensional information.
Abstract:
An operation simulation system of a robot system for simulating operation of a robot system having a robot on a computer, including a setting unit setting a movement point moving together with a moving member, linked with the moving member which is included in the robot system and moves in accordance with a predetermined program; a data acquisition unit acquiring time series position data of the movement point when operating the robot system in accordance with the program on the computer; an image generation unit generating an image of the robot system operating in accordance with the program on the computer and generating an image of a movement path of the movement point based on the time series position data acquired by the data acquisition unit; and a display unit displaying the robot system image and the movement path image generated by the image generation unit.
Abstract:
A robot programming apparatus includes a virtual space creation unit for creating a virtual space that expresses a work space in three dimensions; a target portion designation unit for designating a target portion whose image is to be captured by an image pickup device, on a workpiece model arranged in the virtual space; a position determination unit for determining at least one position of the image pickup device for capturing the image of the target portion in the virtual space; a position storage unit for storing the at least one position of the image pickup device; and an image pickup program creation unit for creating an image pickup program to be taught to a robot so that the image pickup device captures the image of the target portion according to the at least one position of the image pickup device stored in the position storage unit.
Abstract:
An off-line programming system (10) which includes a three-dimensional shape arranging unit (27) which fills in a curved surface or consecutive plurality of flat surfaces of a selected three-dimensional shape by selected operation patterns and arranges a three-dimensional shape in a virtual space so that the operation patterns will be projected on surfaces of the workpiece model, a working path preparing unit (28) which projects operation patterns on the surfaces of the workpiece model so as to prepare a working path of the tool, and a tool position/posture determining unit (29) which uses the prepared working path and normal direction of the surface of the workpiece model as the basis to automatically determined the position or position/posture of the tool model.