摘要:
Blocking artifacts are reduced by projecting each patch obtained from an input image onto a set of bases vectors to determine multiple representations for each patch. The set of bases vectors are learned from a training image, and the bases vectors include a full basis vector, and one or two subspace bases vectors. An optimal basis vector is determined in the set of bases vectors for each patch according to the projection. A threshold is applied to coefficients of the optimal basis vector to determine a filtered representation for each patch, and a reconstructed patch is generated using the filtered representation. Then, the aggregating the reconstructed patches are aggregated to produce an output image.
摘要:
Blocking artifacts are reduced by projecting each patch obtained from an input image onto a set of bases vectors to determine multiple representations for each patch. The set of bases vectors are learned from a training image, and the bases vectors include a full basis vector, and one or two subspace bases vectors. An optimal basis vector is determined in the set of bases vectors for each patch according to the projection. A threshold is applied to coefficients of the optimal basis vector to determine a filtered representation for each patch, and a reconstructed patch is generated using the filtered representation. Then, the aggregating the reconstructed patches are aggregated to produce an output image.
摘要:
A natural input image is upscaled, first by interpolation. Second, edges in the interpolated image are sharpened by a lion-parametric patch transform. The result is decomposed into an edge layer and a detail layer. Only pixels in the detail layer enhanced, and the enhanced detail layer is merged with the edge layer to produce a high resolution version of the input image.
摘要:
Frequency features to be used for binary classification of data using a linear classifier are selected by determining a set of hypotheses in a d-dimensional space using d-dimensional labeled training data. A mapping function is constructed for each hypothesis. The mapping functions are applied to the training data to generate frequency features, and a subset of the frequency are selecting iteratively. The linear function is then trained using the subset of frequency features and labels of the training data.
摘要:
A method is provided for tracking a non-rigid object in a sequence of frames of a video. Features of an object are extracted from the video. The features include locations of pixels and properties of the pixels. The features are used to construct a covariance matrix. The covariance matrix is used as a descriptor of the object for tracking purposes. Object deformations and appearance changes are managed with an update mechanism that is based on Lie algebra averaging.
摘要:
A method detects traffic events in a compressed video. Feature vectors are extracted from the compressed video. The feature vector are provided to a Gaussian mixture hidden Markov model. Then, a maximum likelihood of the Gaussian mixture hidden Markov model is determined to classify the plurality of feature vector as traffic events.
摘要:
A method clusters samples using a mean shift procedure. A kernel matrix is determined from the samples in a first dimension. A constraint matrix and a scaling matrix are determined from a constraint set. The kernel matrix is projected to a feature space having a second dimension using the constraint matrix, wherein the second dimension is higher than the first dimension. Then, the samples are clustered according to the kernel matrix.
摘要:
A method compresses an image partitioned into blocks of pixels, for each block the method converts the block to a 2D matrix. The matrix is decomposing into a column matrix and a row matrix, wherein a width of the column matrix is substantially smaller than a height of the column matrix and the height of the row matrix is substantially smaller than the width of the row matrix. The column matrix and the row matrix are compressed, and the compressed matrices are then combined to form a compressed image.
摘要:
A method models a scene. A video is acquired of the scene, and for each frame of the video, the method updates a set of background models for each pixel; a set of shadow models for each pixel; a set of shadow flow vectors for each color; and a background shadow map. Each pixel in each background model and each shadow model is represented by multiple layers. Each layer includes Gaussian distributions and each Gaussian distribution includes a mean and a covariance. The covariance is an inverse Wishart distribution and the updating is according to a recursive Bayesian estimation process.
摘要:
A method tracks a moving object in a video acquired of a scene with a camera. A background model is maintained for each frame, and moving objects are detected according to changes in the background model. An object model is maintained for the moving object, and kernels are generated for the moving object. A mean-shift process is applied to each kernel in each frame to determine a likelihood of an estimated location of the moving object in each frame, according to the background models, the object model, and the mean shift kernels to track the moving object in the video.