Abstract:
A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.
Abstract:
The present application and the resultant patent provide a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a center hub for providing the flow of fuel therethrough. The center hub may include a first supply circuit for a first micro-mixer fuel nozzle and a second supply circuit for a second micro-mixer fuel nozzle.
Abstract:
A system including a multi-tube fuel nozzle, including a plurality of tubes extending in an axial direction relative to a central axis of the multi-tube fuel nozzle, wherein each tube of the plurality of tubes includes an air inlet, a fuel inlet, and a fuel-air mixture outlet; and an inlet flow conditioner, including a plate extending in a radial direction relative to the central axis of the multi-tube fuel nozzle; an outer wall extending circumferentially about the plate, wherein the outer wall is coupled to the plate; and a plurality of air openings in the plate, the outer wall, or a combination thereof, wherein the plurality of air openings are disposed upstream from the air inlets in the plurality of tubes.
Abstract:
A system including a plurality of multi-tube fuel nozzles each having a plurality of tubes extending in an axial direction, wherein each tube of the plurality of tubes includes an air inlet, a fuel inlet, and a fuel-air mixture outlet, and a fuel nozzle housing, including an outer wall extending circumferentially about a central axis, a plurality of radial walls extending from the outer wall inwardly toward the central axis, a plurality of fuel nozzle receptacles disposed within the outer wall, wherein the plurality of radial walls separate the plurality of fuel nozzle receptacles from one another, and the plurality of multi-tube fuel nozzles are disposed in the plurality of fuel nozzle receptacles a mounting structure including a plurality of radial support arms extending outwardly from the outer wall.
Abstract:
A system including a plurality of multi-tube fuel nozzles each having a plurality of tubes extending in an axial direction, wherein each tube of the plurality of tubes includes an air inlet, a fuel inlet, and a fuel-air mixture outlet, a fuel nozzle housing including a first outer wall extending circumferentially about a central axis, wherein the plurality of multi-tube fuel nozzles are disposed in the fuel nozzle housing, an inlet flow conditioner removably coupled to a first end portion of the first outer wall, wherein the inlet flow conditioner includes a plurality of air openings, and an aft plate assembly removably coupled to a second end portion of the first outer wall, wherein the aft plate assembly includes an aft plate having a plurality of tube apertures, and the plurality of tubes extend to the plurality of tube apertures.
Abstract:
A fuel nozzle assembly includes a center body having a pilot air passage and a pilot fuel passage defined therein. A pilot nozzle having a plurality of premix passages is disposed within a downstream end portion of the center body. Each premix passage includes an inlet that is in fluid communication with the pilot air passage, an outlet that is positioned axially downstream from the inlet and a fuel port that is in fluid communication with the pilot fuel passage. An outer sleeve is coaxially aligned with and radially spaced from the center body so as to define an annular passage therebetween. A strut extends radially outwardly from the center body to the outer sleeve. The fuel nozzle assembly further includes an inlet passage that is in fluid communication with the pilot air passage. The inlet passage extends through the outer sleeve, the strut and the center body.
Abstract:
A system including a first multi-tube fuel nozzle including a plurality of first tubes extending in an axial direction, wherein each first tube of the plurality of first tubes includes a first air inlet, a first fuel inlet, and a first fuel-air mixture outlet, a second multi-tube fuel nozzle including a plurality of second tubes extending in an axial direction, wherein each second tube of the plurality of second tubes includes a second air inlet, a second fuel inlet, and a second fuel-air mixture outlet, and an aft plate including a plurality of first tube apertures and a plurality of second tube apertures, wherein the plurality of first tubes extend to the plurality of first tube apertures, and the plurality of second tubes extend to the plurality of second tube apertures.
Abstract:
A fuel nozzle assembly includes a centerbody and a cartridge that extends axially through the centerbody. The cartridge defines a purge air passage within the centerbody. The cartridge includes a tip portion that is defined by a tip body. The tip body defines a throat portion and a mouth portion which is defined downstream from the throat portion. The tip body further defines a plurality of injection ports circumferentially spaced around the throat portion. The injection ports provide for fluid communication between the purge air passage and the throat portion of the tip body.
Abstract:
A fuel nozzle assembly includes a center body having a pilot air passage and a pilot fuel passage defined therein. A pilot nozzle having a plurality of premix passages is disposed within a downstream end portion of the center body. Each premix passage includes an inlet that is in fluid communication with the pilot air passage, an outlet that is positioned axially downstream from the inlet and a fuel port that is in fluid communication with the pilot fuel passage. An outer sleeve is coaxially aligned with and radially spaced from the center body so as to define an annular passage therebetween. A strut extends radially outwardly from the center body to the outer sleeve. The fuel nozzle assembly further includes an inlet passage that is in fluid communication with the pilot air passage. The inlet passage extends through the outer sleeve, the strut and the center body.
Abstract:
A fuel nozzle for a gas turbine engine that includes: an elongated centerbody; an elongated peripheral wall formed about the centerbody so to define a primary flow annulus therebetween; a primary fuel supply and a primary air supply in the primary flow annulus; and a pilot nozzle. The pilot nozzle may be formed in the centerbody and include: axially elongated mixing tubes defined within a centerbody wall; a fuel port positioned on the mixing tubes for connecting each to a secondary fuel supply; and a secondary air supply configured so to fluidly communicate with an inlet of each of the mixing tubes. A plurality of the mixing tubes may be formed as canted mixing tubes that are configured for inducing a swirling downstream flow, while a plurality of the mixing tubes may be axial mixing tubes.