Abstract:
The embodiments described herein provide for a system including a processor. The processor is configured to select at least one grid system contingency from a plurality of grid system contingencies. The processor is further configured to derive one or more eigen-sensitivity values based on the at least on grid system contingency. The processor is also configured to derive one or more control actions at least partially based on the eigen-sensitivity values. The processor is additionally configured to apply the one or more control actions for generation re-dispatch of a grid system.
Abstract:
A system for damping power system oscillation includes a damping device controller for generating a damping control signal to compensate for a plurality of oscillation modes in the power system oscillations and a damping device to generate a damping signal based on a damping control signal. The damping device controller includes a plurality of outer closed loop paths each including an adaptive controller configured to determine an individual oscillation mode from at least one power system measurement signal. Each adaptive controller is further configured to generate an adaptive control signal to shift at least one open loop pole of an inner loop path related to the individual oscillation mode to a closed loop location.
Abstract:
A direct current (DC) transmission and distribution (T&D) system includes a plurality of DC-to-DC converter devices defining a plurality of isolatable portions of the DC T&D system. The DC T&D system also includes a DC T&D control system coupled to the DC-to-DC converter devices. The DC T&D control system includes a plurality of current sensors. At least one of the current sensors is positioned at one of the DC-to-DC converter devices. The current sensor is configured to transmit signals representative of a value of DC electric current transmission through the DC-to-DC converter device. The DC T&D control system also includes a plurality of processors. At least one processor is coupled to the current sensor and the DC-to-DC converter device. The processor is configured to regulate DC current transmission through the DC-to-DC converter device as a function of the value of DC current transmission through the DC-to-DC converter device.
Abstract translation:直流(DC)传输和分配(T&D)系统包括限定DC T&D系统的多个可隔离部分的多个DC-DC转换器装置。 DC T&D系统还包括耦合到DC-DC转换器设备的DC T&D控制系统。 DC T&D控制系统包括多个电流传感器。 至少一个电流传感器位于DC-DC转换器装置之一处。 电流传感器被配置为传送表示通过DC-DC转换器装置的DC电流传输的值的信号。 DC T&D控制系统还包括多个处理器。 至少一个处理器耦合到电流传感器和DC-DC转换器装置。 处理器被配置为根据通过DC-DC转换器装置的DC电流传输的值来调节通过DC-DC转换器装置的DC电流传输。
Abstract:
In one aspect, a computer system for managing occurrences of data anomalies in a data stream is provided. The computer system includes a processor in communication with the data stream. The processor is programmed to receive a first data stream from a phasor measurement unit. The processor is also programmed to calculate at least one singular value associated with the first data stream. The processor is further programmed to detect a first data anomaly within the first data stream using the at least one singular value. The first data anomaly occurs during a first time segment. The processor is also programmed to indicate the first time segment as containing the first data anomaly.
Abstract:
A hybrid HVDC converter system includes a DC bus, at least one capacitor commutated converter (CCC) and at least one self-commutated converter (SCC) coupled in series through the DC bus. The CCC induces a first voltage on the DC buses, the SCC induces a second voltage on the DC bus, the first voltage and the second voltage are summed to define a total DC voltage. The method includes at least one of regulating the total DC voltage induced on the DC buses including regulating the first DC voltage through the CCC and regulating the second DC voltage through the SCC substantially simultaneously, regulating the total DC voltage induced on the DC bus including regulating the second DC voltage through the SCC, and regulating the total DC voltage induced on the DC bus including regulating the first DC voltage through the CCC.
Abstract:
A computer-based method for contingency analysis of oscillatory stability in an electrical power transmission system is provided. The method uses at least one processor. The method includes receiving, by the at least one processor, a plurality of component inputs from a plurality of system components within the electrical power transmission system. The method also includes generating a nominal matrix for the electrical power transmission system. The nominal matrix includes a set of equations at least partially modeling the electrical power transmission system. The method further includes calculating eigenvalues and eigenvectors of the nominal matrix. The method also includes identifying a contingency representing a postulated disturbance of the electrical power transmission system. The method further includes estimating a contingency eigenvalue for the contingency using the eigenvalues and eigenvectors of the nominal matrix.
Abstract:
A high voltage direct current (HVDC) converter system includes a line commutated converter (LCC) configured to convert a plurality of AC voltages and currents to a regulated DC voltage of one of positive and negative polarity and a DC current transmitted in only one direction. The HVDC converter system also includes a buck converter configured to convert a plurality of AC voltages and currents to a regulated DC voltage of one of positive and negative polarity and a DC current transmitted in one of two directions. The LCC and the buck converter are coupled in parallel to an AC conduit and are coupled in series to a DC conduit. The HVDC converter system further includes a filtering device coupled in parallel to the buck converter through the AC conduit. The filtering device is configured to inject AC current having at least one harmonic frequency into the AC conduit.