Abstract:
Exemplary embodiments are directed to estimating an electrical property of tissue using Magnetic Resonance (MR) images. In exemplary embodiments, complex MR images of a target tissue are obtained. An estimated value of an electrical property of the target tissue is determined based on complex values of the pixels in the complex MR images. The complex values are proportional to the product of the transmit radio frequency magnetic field and the receive RF magnetic field.
Abstract:
Embodiments of the invention are utilized to improve shimming capability while reducing radial space and the volume required to contain active shim coils by nesting the coils of different degrees and orders inside each other and limiting the azimuthal span of the individual saddle coils. This allows two or more radial shim sets to be combined together in the same layer resulting in a significant radial savings that increases the useable portion of an MRI system.
Abstract:
Exemplary embodiments of the present disclosure are directed to estimating an electrical property of tissue using MR images. Complex values having real components and imaginary components are generated and are associated with pixels in one or more MR images that corresponding to a region of tissue for which the electrical property is constant. An estimated value of the electrical property for the region of tissue is determined based on a least squared error estimation applied to the complex values.
Abstract:
Magnetic resonance imaging systems and methods are provided. A method includes applying a slice selection gradient perpendicular to a desired slice plane and applying, substantially simultaneously with the slice selection gradient, a radiofrequency nuclear magnetic resonance excitation pulse having a bandwidth corresponding to the desired slice plane and a frequency corresponding to the frequency of protons present in the desired slice plane. The method also includes applying, during an encoding period and in a first direction, a phase encoding gradient having a phase encoding portion and a shearing portion and applying, during the readout period and in a second direction perpendicular to the first direction, a frequency encoding gradient having a portion having substantially the same shape as the shearing portion of the phase encoding gradient.