Abstract:
A system for discharging dry solids into high pressure environments is disclosed. The system includes a hopper, a feeder device coupled to the hopper, and a discharge device disposed downstream relative to the feeder device. The feeder device includes a rotatable casing including a plurality of pockets, a stationary core disposed within the rotatable casing, and a plurality of valves. Each pocket includes an inlet, an outlet, and a plurality of first through-holes. The stationary core includes a plurality of channels, where each channel includes a plurality of second through-holes. Each valve is disposed at the outlet of a corresponding pocket from the plurality of pockets. The discharge device includes a valve actuator configured to actuate each valve.
Abstract:
An apparatus and method for preparing and delivering a fluid mixture. The apparatus including a high pressure differential solids feeder assembly and a pressurized mixing apparatus. The feeder assembly is coupled to a proppant storage vessel at ambient pressure and receives a continuous unpressurized proppant output flow from the proppant storage vessel. The feeder assembly is configured to output a continuous pressurized proppant output flow of sufficient mass to achieve continuous operation of the apparatus in an uninterrupted episode for an individual fracture stage. The pressurized mixing apparatus is coupled to the feeder assembly and in fluidic communication with the continuous pressurized proppant output flow and a continuous pressurized fracturing fluid flow. The pressurized mixing apparatus is configured to output a continuous flow of a pressurized fluid mixture of a sufficient volume and mass to achieve continuous operation of the apparatus in an uninterrupted episode for the individual fracture stage.
Abstract:
A system for treatment of a gaseous medium, comprises an extruder having a barrel. The extruder further comprises a first inlet port, a second inlet port, and a plurality of outlet ports coupled to the barrel. The first inlet port is configured for feeding a lean sorbent, the second inlet port is configured for feeding a gaseous medium, and the plurality of outlet ports are configured for releasing a plurality of components removed from the gaseous medium. Further, the extruder comprises a plurality of helical elements coupled to a plurality of kneading elements, mounted on a shaft, and disposed within the barrel. The barrel and the plurality of helical and kneading elements together form an absorption unit and a desorption unit. The first and second inlet ports are formed in the absorption unit and the plurality of outlet ports are formed in the absorption and desorption units.