Abstract:
A brush seal has bristles with a free end sealing against a radially inward surface of a stationary component. The bristles are angled axially 15 degrees to 70 degrees, and circumferentially at an angle that is less than the axial angle. A retaining plate extends radially outward from the rotating component, and supports the bristles from centrifugal loading in an operative state of a turbomachine. A bristle shield extends radially outward along a length of the bristles, such that the bristle shield is configured to shield the bristles from flow during an operative state of the turbomachine. The bristles are located between the retaining plate and the bristle shield. A circumferential groove has a downstream side and an upstream side, and a side plate is attached to the upstream side. The fixed end of the bristles is attached to the upstream side of the groove by the side plate.
Abstract:
A steam turbine is provided. The steam turbine includes a housing, a first steam inlet configured to discharge a first steam flow within the housing, and a second steam inlet configured to provide a second steam flow. A rotor and stator are coupled to the housing and configured to form a first flow path therebetween and in flow communication with the first steam flow. The rotor includes a plurality of blades coupled to the rotor, at least one root of the plurality of blades has a first side, a second side and a passageway coupled in flow communication to the first side and the second side. The passageway is configured to receive the second steam flow within the at least one root. The at least one root includes an angel wing configured to seal the second steam flow from the first flow path.
Abstract:
A steam turbine is provided. The steam turbine includes a housing and a steam inlet coupled in flow communication to the housing which is configured to discharge a first steam flow within the housing. A stator is coupled to the housing and includes plurality of vanes. A rotor is coupled to the housing and located within the stator, wherein the rotor and the stator are configured to form a first flow path there between and in flow communication with the first steam flow. The rotor includes a plurality of blades coupled to the rotor, at least one root of the plurality of blades has a first side, a second side and a passageway coupled in flow communication to the first side and the second side. The passageway is configured to define a second flow path in flow communication with the first flow path and to discharge a second steam flow within the at least one root. The at least one root of the plurality of blades includes an angel wing in flow communication with the passageway and configured to seal the passageway from the first flow path.
Abstract:
Systems and devices configured to reduce thermal design clearances (e.g., between stationary nozzles connected to the inner casing and rotor buckets connected to the rotor) in turbines by actively controlling casing movements and/or locations during turbine operation are disclosed. In one embodiment, a clearance management system includes: a first inner casing support arm shaped to connect to an inner casing of a turbine and extend through an outer casing of the turbine; a seal system disposed about the first inner casing support arm and configured to connect to the outer casing; and a set of actuators disposed on a turbine foundation of the turbine and connected to the first inner casing support arm, the set of actuators located external to the outer casing and configured to adjust a position of the inner casing relative to the outer casing via manipulation of the first inner casing support arm.
Abstract:
Various embodiments include a rotor key member, along with a related assembly and steam turbine. Particular embodiments include a rotor key member for radially retaining a circumferential seal in a steam turbine rotor body, the rotor key member including: a main body sized to contact an axial face of the circumferential seal; and a hook extending from the main body in a direction axially away from the circumferential seal, the hook sized to substantially complement a corresponding shelf in the steam turbine rotor body to restrict movement of the circumferential seal relative to the steam turbine rotor body.
Abstract:
A seal for a rotary machine includes a flexible element extending circumferentially about a rotor and extending generally radially from a first end to a free second end. The flexible element is coupled proximate the first end for rotation with the rotor. The flexible element extends at substantially a first angle between at least an intermediate portion of the flexible element and the free second end when the rotor is operating at less than a critical speed, such that a clearance gap is defined between the free second end and a stationary portion. The seal also includes a retaining plate having a stop that orients the flexible element at a second angle proximate the free second end when the rotor is operating at equal to or greater than the critical speed, such that the flexible element forms a dynamic seal between the rotor and the stationary portion.
Abstract:
Embodiments of the present disclosure are directed toward a stator ring configured to be disposed about a rotor of a turbine, wherein the stator ring comprises a plurality of hydrodynamic pads extending from a sealing face of the stator ring, wherein each of the plurality of hydrodynamic pads is configured to hydrodynamically engage with a rotor ring.
Abstract:
Embodiments of the present disclosure are directed toward a face seal including a stator ring configured to be disposed about a rotor of a turbine, wherein stator ring comprises a first ring segment and a second ring segment configured to cooperatively form the stator ring, wherein the first and second ring segments are circumferentially split and have at least one bearing element disposed between the first and second ring segments, and wherein the at least one bearing element is configured to enable relative axial motion between the first and second ring segments at interfaces between the first and second ring segments
Abstract:
A first aspect of the invention provides an axially faced seal system for a radial tip of a turbine component, the system comprising: a stationary turbine component; a rotating turbine component; and a seal ring mounted to the stationary turbine component, the seal ring extending axially to the rotating turbine component and engaging the rotating turbine component on a side surface, wherein the side surface of the rotating turbine component is on a continuous, rotating mating ring having a 360 degree arc.
Abstract:
Embodiments of the invention relate generally to rotor cooling and, more particularly, to a stator member having at least one passage for the delivery of cooling steam to a bucket root. In one embodiment, the invention provides a turbine comprising: a rotor including a first bucket root; and a stator member having: a rotor bore within which at least a portion of the rotor is disposed; a facing end adjacent to the first bucket root of the rotor; a plurality of seals within the rotor bore for sealing against the rotor, the plurality of seals including a first seal nearest the facing end and a second seal adjacent to the first seal; and a plurality of passages, each extending from a surface of the rotor bore at a point between the first seal and the second seal and extending through the facing end.