Abstract:
A powertrain includes an engine, an exhaust system including an exhaust passageway in fluid communication with the engine, an exhaust gas heat exchanger, a transmission having a transmission cooling system, a transmission heat exchanger, a heater core, a pump, and an engine coolant circuit. The engine coolant circuit provides fluid communication between the engine, the exhaust gas heat exchanger, the transmission heat exchanger, the heater core, and the pump. The exhaust gas heat exchanger is operatively connected to the exhaust system and configured to transfer heat between the engine coolant circuit and the exhaust system. The transmission heat exchanger is operatively connected to the transmission cooling system and configured to transfer heat between the engine coolant circuit and the transmission cooling system.
Abstract:
A powertrain includes an engine, an exhaust system including an exhaust passageway in fluid communication with the engine, an exhaust gas heat exchanger, a transmission having a transmission cooling system, a transmission heat exchanger, a heater core, a pump, and an engine coolant circuit. The engine coolant circuit provides fluid communication between the engine, the exhaust gas heat exchanger, the transmission heat exchanger, the heater core, and the pump. The exhaust gas heat exchanger is operatively connected to the exhaust system and configured to transfer heat between the engine coolant circuit and the exhaust system. The transmission heat exchanger is operatively connected to the transmission cooling system and configured to transfer heat between the engine coolant circuit and the transmission cooling system.
Abstract:
A control module-implemented method for estimating an end of life a belt transferring torque between at least two rotating members of a belt drive system includes monitoring a plurality of belt parameters during a life cycle of the belt and determining an instantaneous damage factor of the belt based on the plurality of belt parameters. The end of life of the belt is estimated based on the instantaneous damage factor.
Abstract:
Method for adjusting a state-of-charge within an electrical energy storage device of a hybrid powertrain system includes monitoring a plurality of electrical energy storage device parameters and determining a discharge power capability of the electrical energy storage device based on the monitored plurality of electrical energy storage device parameters. If the discharge capability is less than a first threshold, a state-of charge adjustment mode is activated. The state-of-charge adjustment mode includes increasing a commanded state-of-charge to an elevated state-of-charge to increase the discharge capability to achieve the first threshold and maintaining the commanded state-of-charge at the elevated state-of-charge until the discharge capability achieves the first threshold.
Abstract:
A powertrain system includes an internal combustion engine rotatably coupled via an input member to a transmission. The transmission has a hydraulic circuit including a hydraulic fluid pump directly mechanically coupled to the input member. A computer-implemented method for operating the powertrain system includes, in response to a command to execute an engine autostop maneuver, determining an engine speed ramping profile to achieve a desired stopped engine position. Hydraulic pressure in the hydraulic circuit is controlled in response to the engine speed ramping profile and engine speed during said engine autostop maneuver.