Abstract:
A structure for disrupting the flow of a fluid is provided, the structure comprising: a first lateral wall and a second lateral wall spaced apart from one another a distance across an X-axis; and a turbulator extending between the first lateral wall and the second lateral wall, the turbulator extending away from the floor. The turbulator includes a first front surface extending between the first lateral wall and the second lateral wall, a second front surface extending between the first lateral wall and the second lateral wall, a first rear surface extending between the first lateral wall and the second lateral wall, the first rear surface extending between the first front surface and the floor, and a second rear surface adjoining the first rear surface and extending between the first lateral wall and the second lateral wall, the second rear surface extending between the second front surface and the floor.
Abstract:
Gas turbine engines, as well as outer walls and flow path assemblies of gas turbine engines, are provided. For example, an outer wall of a flow path comprises a combustor portion extending through a combustion section, and a turbine portion extending through at least a first turbine stage of a turbine section. The combustor and turbine portions are integrally formed as a single unitary structure that defines an outer boundary of the flow path. As another example, a flow path assembly comprises a combustor dome positioned a forward end of a combustor; an outer wall extending from the combustor dome through at least a first turbine stage; and an inner wall extending from the combustor dome through at least a combustion section. The combustor dome extends radially from the outer wall to the inner wall and is integrally formed with the outer and inner walls as a single unitary structure.
Abstract:
A gas turbine engine wall is provided. The wall includes an inner surface and an opposing outer surface having at least one film cooling hole defined therein. The at least one film cooling hole includes an inclined inlet bore that extends from the inner surface and a pair of channels that diverge laterally from an outlet end of the inclined inlet bore. The pair of channels have a substantially constant width and are separated by a ridge to form a boomerang cross-sectional shape.
Abstract:
A turbine airfoil includes: a concave pressure sidewall and a convex suction sidewall joined together at a leading edge and a trailing edge, and extending between a root and a tip; an internal rib extending between the pressure sidewall and the suction sidewall; and a crossover hole formed in the rib, the crossover hole having a noncircular cross-sectional shape with a major axis defining a maximum dimension of the cross-sectional shape; wherein the major axis of the crossover hole lies in plane with the rib and is non-parallel to an imaginary curvilinear lateral centerline which defines a locus of points lying halfway between the pressure and suction sidewalls. The orientation of the crossover holes minimizes stress concentration caused by the presence of the crossover holes.
Abstract:
A component for a gas turbine engine includes a first region formed substantially of a first CMC material, wherein first region defines a first thermal conductivity. The component further includes a second region formed substantially of a second CMC material, wherein the second region defines a second thermal conductivity. Further, the component defines a thickness and the first region is positioned adjacent to the second region along the thickness, wherein the first thermal conductivity is different than the second thermal conductivity to alert a thermal profile of the component.
Abstract:
Apparatuses and methods are taught for cooling a turbine blade wherein at least one circuit is isolated along a cool suction side of the blade and the circuit turns aft toward a trailing edge.
Abstract:
Gas turbine engines, as well as outer walls and flow path assemblies of gas turbine engines, are provided. For example, an outer wall of a flow path comprises a combustor portion extending through a combustion section, and a turbine portion extending through at least a first turbine stage of a turbine section. The combustor and turbine portions are integrally formed as a single unitary structure that defines an outer boundary of the flow path. As another example, a flow path assembly comprises a combustor dome positioned a forward end of a combustor; an outer wall extending from the combustor dome through at least a first turbine stage; and an inner wall extending from the combustor dome through at least a combustion section. The combustor dome extends radially from the outer wall to the inner wall and is integrally formed with the outer and inner walls as a single unitary structure.
Abstract:
A component for a gas turbine engine includes a first region formed substantially of a first CMC material, wherein first region defines a first thermal conductivity. The component further includes a second region formed substantially of a second CMC material, wherein the second region defines a second thermal conductivity. Further, the component defines a thickness and the first region is positioned adjacent to the second region along the thickness, wherein the first thermal conductivity is different than the second thermal conductivity to alert a thermal profile of the component.
Abstract:
An apparatus for a gas turbine engine can include an airfoil having an interior. The interior can be separated into one or more cooling air channels extending in a span-wise direction. An accelerator insert can be placed in one or more cooling air channels to define a reduced cross-sectional area within the cooling air channel to accelerate an airflow passing through the cooling air channel.
Abstract:
A turbine airfoil apparatus includes: an airfoil including a concave pressure sidewall and a convex suction sidewall joined together at a leading edge and at a trailing edge; an endwall that projects laterally outwardly from the airfoil at one spanwise end thereof, the endwall having an outer surface facing the airfoil and an opposing inner surface; a plenum defined within the endwall between the inner and outer surfaces wherein the plenum is forked in plan view, with at least two branches, each branch terminating at a closed end, each branch having a throat disposed at its upstream end, wherein each throat has a relatively constricted flow area for increasing flow velocity; and at least one film cooling hole passing through the outer surface and communicating with the plenum.