Abstract:
A model-free adaptive controller is disclosed, which uses a dynamic artificial neural network with a learning algorithm to control any single-variable or multivariable open-loop stable, controllable, and consistently direct-acting or reverse-acting industrial process without requiring any manual tuning, quantitative knowledge of the process, or process identifiers. The need for process knowledge is avoided by substituting 1 for the actual sensitivity function .differential.y(t)/.differential.u(t) of the process.
Abstract:
A method and apparatus for intelligently controlling continuous process variables. A Dream Controller comprises an Intelligent Engine mechanism and a number of Model-Free Adaptive (MFA) controllers, each of which is suitable to control a process with specific behaviors. The Intelligent Engine can automatically select the appropriate MFA controller and its parameters so that the Dream Controller can be easily used by people with limited control experience and those who do not have the time to commission, tune, and maintain automatic controllers.
Abstract:
A method and apparatus is disclosed for intelligently inverting DC power from DC sources such as photovoltaic (PV) solar modules to single-phase or three-phase AC power to supply power for off-grid applications. A number of regular or redundant off-grid Mini-Inverters with one, two, three, or multiple input channels in a mixed variety can easily connect to one, two, three, or multiple DC power sources such as solar PV modules, invert the DC power to AC power, and daisy chain together to generate and supply AC power to electrical devices that are not connected to the power grid including motors, pumps, fans, lights, appliances, and homes.
Abstract:
An apparatus and method is disclosed for solving optimization problems without the need to build mathematical models or rules. The inventive method combines the structure of a single-loop feedback control system and optimization search engine mechanisms. Running in real-time, a Model-Free Adaptive (MFA) optimizer can automatically search for the optimal operating point for a dynamic system when a parabolic relationship exists between the input and output. The MFA optimizer comprises a user-selected Min/Max setter to define the searching objective, a process acting-mode search engine to determine if the process is running in direct-acting or reverse-acting mode, a maximum search engine and a minimum search engine to find the maximum or minimum. This apparatus and method is useful in fuel-and-air ratio optimization for combustion processes, yield optimization for chemical or biological reactors, and operating efficiency optimization for coal or ore ball mills.
Abstract:
An apparatus and method is disclosed for automatically controlling single-input-multi-output (SIMO) systems or processes. The control output signals of a plurality of single-input-single-output (SISO) automatic controllers are combined by a combined output setter so that these SISO controllers are converted to a multi-input-single-output (MISO) automatic controller based on certain criteria; and its resulting controller output signal is able to manipulate only one actuator to control a plurality of continuous process variables or attempt to minimize a plurality of error signals between the setpoints and their corresponding process variables. Without the need of building process mathematical models, this inventive apparatus and method is useful for automatically controlling unevenly paired multivariable systems or processes where there are less system inputs than outputs including but not limited to industrial furnaces, rapid thermal processing (RTP) chambers, chemical mechanical planarization (CMP) systems, and distillation columns.
Abstract:
A Robust Model-Free Adaptive controller is disclosed for effectively controlling simple to complex systems including industrial processes, equipment, facilities, devices, engines, robots, vehicles, and appliances. Without the need of re-designing a controller or re-tuning the controller parameters, the inventive controller is able to provide a wide robust range and keep the system under automatic control during normal and extreme operating conditions when there are significant disturbances or changes in system dynamics. Because of its simplicity and capability, the control system is useful for building flexible and adaptive production systems to fulfill the on demand manufacturing needs of the new e-commerce environment.
Abstract:
An enhanced model-free adaptive controller is disclosed, which consists of a linear dynamic neural network that can be easily configured and put in automatic mode to control simple to complex processes. Two multivariable model-free adaptive controller designs are disclosed. An enhanced anti-delay model-free adaptive controller is introduced to control processes with large time delays. A feedforward/feedback model-free adaptive control system with two designs is introduced to compensate for measurable disturbances.
Abstract:
A flexible multifunction model-free adaptive controller capable of controlling a very broad range of processes uses storage and selective use of multiple controller parameter sets, measurement filtering, transient prediction and use of extra controllers to dynamically set constraints for the output of the process controller in order to deal with transients resulting from sudden input changes, yet allow the process to run close to its physical limitations under dynamically varying operating conditions and periodic large processing parameter changes.